Open Access
Issue
BIO Web Conf.
Volume 146, 2024
2nd Biology Trunojoyo Madura International Conference (BTMIC 2024)
Article Number 01050
Number of page(s) 7
Section Dense Matter
DOI https://doi.org/10.1051/bioconf/202414601050
Published online 27 November 2024
  • J. Gong, and H. Kim, RHSBoost: Improving classification performance in imbalance data, Computational Statistics and Data Analysis, Elsevier B.V., 111, 1–13, (2017), doi: 10.1016/j.csda.2017.01.005 [CrossRef] [Google Scholar]
  • Y. A. Du, Research on the Route Pricing Optimization Model of the Car-Free Carrier Platform Based on the BP Neural Network Algorithm, Complexity, (2021) [Google Scholar]
  • J. Choi, D. Kim, M. Ko, D. Lee, K. Wi, H. Lee, Co mpressive strength prediction of ternary-blended concrete using deep neural network with tuned hyperparameters, Journal of Building Engineering 75, (2023) [Google Scholar]
  • M. Ahuja, D. P. Mishra, D. Mohanty, H. Agrawal, S. Roy, Development of Empirical and Artificial Neural Network Model for the Prediction of Sorption Time to Assess the Potential of CO2 Sequestration in Coal, ACS Omega, 8, 34, 31480–31492, (2023), https://doi.org/10.1021/acsomega.3c04412 [CrossRef] [PubMed] [Google Scholar]
  • S. Karmakar, G. Shrivastava, M. K. Kowar, Impact of learning rate and momentum factor in the performance of back-propagation neural network to identify internal dynamics of chaotic motion, Kuwait Journal of Science (KJS), 41 (2014) [Google Scholar]
  • B. Raharjo, N. Farida, P. Subekti, R. H. S. Siburian, P. D. H. Ardana, and R. Rahim, Optimization Forecasting Using Back-Propagation Algorithm, J. Appl. Eng. Sci., 19, 1083–1089, (2021) [CrossRef] [Google Scholar]
  • J. Prusa, Using Random Undersampling to Alleviate Class Imbalance on Tweet Sentiment Data, (2015), doi: 10.1109/IRI.2015.39 [Google Scholar]
  • W. Ng. K. Dai, K. Severson, W. Huang, F. Anderson, and C. Stultz, Generative oversampling with a contrastive variational autoencoder, In 2019 IEEE International Conference on Data Mining (ICDM), 101–109, (2019) [Google Scholar]
  • P. Alkhairi, E. R. Batubara, R. Rosnelly, W. Wanayaumini, and H. S. Tambunan, Effect of Gradien Descent With Momentum Backpropagation Training Function in Detecting Alphabet Letters, Sinkron : Jurnal Penelitian Teknik Informatika, 8, 574–583, (2023) [Google Scholar]
  • T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna, A next-generation hyperparameter optimization framework, in Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2019) [Google Scholar]
  • M. G. M. Abdolrasol et al., Artificial neural networks based optimization techniques: A review, Electron, 10, 21 (2021) https://doi.org/10.3390/electronics10212689 [Google Scholar]
  • V. Riiman, A. Wilson, P. Pirkelbauer, Comparing Artificial Neural Network and Cohort-Component Models for Population Forecasts, Published in Population, Economics, Review, (2019) [Google Scholar]
  • K. M. R. Alam, N. Siddique, and H. Adeli, A dynamic ensemble learning algorithm for neural networks, Neural Comput. Appl., 32, 2, 8675–8690, (2020), doi: 10.1007/s00521-019-04359-7. [CrossRef] [Google Scholar]
  • Hairani, D. Priyanto, A New Approach of Hybrid Sampling SMOTE and ENN to the Accuracy of Machine Learning Methods on Unbalanced Diabetes Disease Data, (IJACSA) International Journal of Advanced Computer Science and Applications, 14, 585–590, (2023), DOI: 10.14569/IJACSA.2023.0140864 [Google Scholar]
  • S. S. Mullick, S. Datta, S., and S. Das, Generative adversarial minority oversampling. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 1695–1704, (2019) [Google Scholar]
  • Z. Huang, Y. Sang, Y. Sun, L. Jiancheng, A neural network learning algorithm for highly imbalanced data classification, Information Sciences, 612, 496–513, (2022), https://doi.org/10.1016/j.ins.2022.08.074 [CrossRef] [Google Scholar]
  • C. Kasemset, K. Phuruan, T. Opassuwan, Shallot Price Forecasting Models: Comparison among Various Techniques, Production Engineering Archives, 29, 4, 348–355, (2023) [CrossRef] [Google Scholar]
  • Schlenker, Wolfram, M. J. Roberts, Nonlinear temperature effects indicate severe damages to US crop yields under climate change, the National Academy of sciences, 106, 37, 15594–15598, (2009), doi: 10.1073/pnas.0906865106 [CrossRef] [PubMed] [Google Scholar]
  • M. Rafrin, M. Agus, P. A. Maharani, loT-Based Irrigation System Using Machine Learning for Precision Shallot Farming, JURNAL RESTI (Rekayasa Sistem dan Teknologi Informasi), 8, 2, 216–222, (2024) [CrossRef] [Google Scholar]
  • L. Sumaryanti, Nurcholis, L. Lamalewa, Aplication of Hybrid Method for Superior cattle selection using Decision Support System, E3S Web of Conferences, 328, (2021). [Google Scholar]
  • Tsukazaki, Hikaru, Honjo, Masanori, Yamashita, Ken-Ichiro, Ohara, Takayoshi, Kojima, Akio, Ohsawa, Ryo, Wako, Tadayuki. Classification and identification of bunching onion (Allium Fistulosum) varieties based on SSR markers, Breed Sci. 60, (2010), doi: 10.1270/jsbbs.60.139. [Google Scholar]
  • Y. R. Kurniawan, D. D. Hidayat, R. Luthfiyanti, R. C. E. Andriansyah, A Indriati, A comparative study on engineering properties of three varieties of shallots, IOP Conf. Ser.: Earth Environ. Sci. 462, 012025, (2020), doi: 10.1088/1755-1315/462/1/012025 [CrossRef] [Google Scholar]
  • R. Benzer, Population dynamics forecasting using artificial neural networks, Fresenius environmental bulletin, 24, 2, (2015) [Google Scholar]
  • A. Paul, C. Bhakat, S. Mondal, D. K. Mandal, An observational study investigating uniformity of manual body condition scaring in dairy cows, Indian J Dairy Sci. 73 (2020). doi: 10.33785/IJDS.2020.v73i01.013 [Google Scholar]
  • X. Song, E. A. M. Bokkers, S. V. Mourik, P.W.G. Groot Koerkamp, P. P. J. V. D. Tol, Automated body condition scoring of dairy cows using 3-dimensional feature extraction fTom multiple body regions, Journal of Dairy Science. 102, 4294–4308, (2019), https://doi.org/10.3168/jds.2018-15238 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.