Open Access
Issue |
BIO Web Conf.
Volume 146, 2024
2nd Biology Trunojoyo Madura International Conference (BTMIC 2024)
|
|
---|---|---|
Article Number | 01083 | |
Number of page(s) | 8 | |
Section | Dense Matter | |
DOI | https://doi.org/10.1051/bioconf/202414601083 | |
Published online | 27 November 2024 |
- Kemenkes RI P2PTM, Hari Hipertensi Dunia 2019: ‘Know Your Number, Kendalikan Tekanan Darahmu dengan CERDIK., ‘ Kementrian Kesehatan Republik Indonesia, 1, (2019), Accessed: Oct. 19, 2022, Available: http://p2ptm.kemkes.go.id/tag/hari-hipertensi-dunia-2019-know-your-number-kendalikan-tekanan-darahmu-dengan-cerdik [Google Scholar]
- Kemenkes RI, Hasil UtamaRiskesdas 2018 | Badan Penelitian dan Pengembangan Kesehatan, (2018) https://www.litbang.kemkes.go.id/hasil-utama-riskesdas-2018/ (accessed Oct. 19, 2022). [Google Scholar]
- K. R. Kesehatan Badan Penelitian dan Pengembangan Kesehatan Puslitbang Humaniora dan Manajemen Kesehatan, HASIL UTAMA RISKESDAS 2018 PROVINSI JAWA TIMUR, (2018) [Google Scholar]
- Nailul Maghfiroh, Hipertensi di UPTPuskesmas Modopuro, (2022) [Google Scholar]
- Kemenkes RI, Klasifikasi Hipertensi - Direktorat P2PTM, 12, 1, (2018), Accessed: Nov. 02, 2022, Available: http://p2ptm.kemkes.go.id/infographic/klasifikasi-hipertensi [Google Scholar]
- J. A. Orozco Torres, A. Medina Santiago, J. M. Villegas Izaguirre, M. Amador García, and A. Delgado Hernández, Hypertension Diagnosis with Backpropagation Neural Networks for Sustainability in Public Health, Sensors, 22, 14, 120, (2022), DOI: 10.3390/s22145272 [CrossRef] [PubMed] [Google Scholar]
- F. G. Woldemichael and S. Menaria, Prediction of Diabetes using Data Mining Techniques, in Proc. 2nd Int. Conf. Trends Electronics Informatics (ICOEI), 414–418, (2018), DOI: 10.1109/ICOEI.2018.8553959 [Google Scholar]
- P. Sarkar and S. Pawar, Fast and Accurate Prediction of Diabetes Mellitus using Artificial Neural Network, in International Conference on Recent Advances in Science and Engineering Technology (ICRASET), (2023), DOI: 10.1109/ICRASET59632.2023.10419972 [Google Scholar]
- D. Nasien, V. Enjeslina, M. H. Adiya, and Z. Baharum, Breast Cancer Prediction Using Artificial Neural Networks Back Propagation Method, in International Conference on Robotic Automation System (ICORAS), (2001), DOI: 10.1088/1742-6596/2319/1/012025 [Google Scholar]
- E. M. S. Rochman, W. Agustiono, N. Suryani, & A. Rachmad, Comparison between the backpropagation and single exponential smoothing method in sugar production forecasting case, Commun. Math. Biol. Neurosci., 2021, (2021) [Google Scholar]
- P2PTM Kemenkes RI, Hipertensi, The Silent Killer - Direktorat P2PTM, Kementerian Kesehatan Republik Indonesia, (2018). http://p2ptm.kemkes.go.id/infographic-p2ptm/hipertensi-penyakit-jantung-dan-pembuluh-darah/hipertensi-the-silent-killer (Accessed Nov. 01, 2022). [Google Scholar]
- A. Tharwat, Classification assessment methods, Applied Computing and Informatics, 17, 1, 168192, (2021), doi: https://doi.org/10.1016/j.aci.2018.08.003 [Google Scholar]
- R. Wazirali, An improved intrusion detection system based on KNN hyperparameter tuning and crossvalidation, Arabian Journal for Science and Engineering, 45, 10859–10873, (2020), doi: https://doi.org/10.1007/s13369-020-04907-7 [CrossRef] [Google Scholar]
- L. Zajmi, F. Y. H. Ahmed, A. A. Jaharadak, and A. Amril, Concepts, methods, and performances of particle swarm optimization, backpropagation, and neural networks, Applied Computational Intelligence and Soft Computing, 2018, 7, (2018), doi: https://doi.org/10.1155/2018/9547212 [CrossRef] [Google Scholar]
- A. Nabil, M. Seyam and A. Abou-Elfetouh, Prediction of Students’ Academic Performance Based on Courses’ Grades Using Deep Neural Networks, in IEEE Access, 9, 140731–140746, (2021), DOI: 10.1109/ACCESS.2021.3119596 [CrossRef] [Google Scholar]
- I. Arefa, M. S. Alam, I. Siddiquee and N. Siddique, Performance Analysis of Machine Learning Algorithms for Hypertension Decision Support System,” 2019 IEEE International Conference on Robotics, Automation, Artificial-intelligence and Internet-of-Things (RAAICON), 15–20, (2019), DOI: 10.1109/RAAICON48939.2019.8 [Google Scholar]
- A. Rachmad, M. Syarief, J. Hutagalung, S. Hernawati, E.M.S. Rochman, Y.P. Asmara, Comparison of CNN architectures for Mycobacterium tuberculosis classification in sputum images, Ingénierie des Systèmes d’Information. 29, 1, 49–56, (2024), doi: https://doi.org/10.18280/isi.290106 [Google Scholar]
- A. Rachmad, M. Fuad, E.M.S. Rochman, Convolutional neural network-based classification model of corn leaf disease, Mathematical Modelling of Engineering Problems, 10, 2, 530536, (2023), doi: https://doi.org/10.18280/mmep.100220 [Google Scholar]
- A. Rachmad, F. Sonata, J. Hutagalung, D. Hapsari, M. Fuad, E.M.S. Rochman, An automated system for osteoarthritis severity scoring using residual neural networks, Mathematical Modelling of Engineering Problems, 10, 5, 1849–1856, (2023), doi: https://doi.org/10.18280/mmep.100538 [CrossRef] [Google Scholar]
- A. Kumar, S. Sarkar, and C. Pradhan, Malaria Disease Detection Using CNN Technique with SGD, RMSprop and ADAM Optimizers, Stud. Big Data, 68, 211–230, (2020), DOI: 10.1007/978-3-030-33966-1_11 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.