Open Access
Issue |
BIO Web Conf.
Volume 147, 2024
11th International Symposium of East Asia Fisheries and Technologist Association (EAFTA 2024)
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/bioconf/202414701008 | |
Published online | 10 January 2025 |
- H.C. Flemming, J. Wingender, The biofilm matrix. Nature Reviews Microbiology 8 (9), 623–633 (2010). https://doi.org/10.1038/nrmicro2415 [CrossRef] [PubMed] [Google Scholar]
- Lapidot, U. 3, S. Yaron, Biofilm formation and the survival of Salmonella Typhimurium on parsley. International Journal of Food Microbiology, 109 (3), 229–233 (2006). https://doi.org/10.1016ZJ.IJF00DMICR0.2006.01.012 [CrossRef] [PubMed] [Google Scholar]
- K. Aarnisalo, J. Lundén, H. Korkeala, G. Wirtanen, Susceptibility of Listeria monocytogenes strains to disinfectants and chlorinated alkaline cleaners at cold temperatures. LWT-Food Science and Technology, 40 (6), 1041–1048 (2007). https://doi.org/10.1016/J.LWT.2006.07.009 [CrossRef] [Google Scholar]
- S. Moreau-Marquis, B.A. Stanton, G.A. O’Toole, Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulmonary Pharmacology & Therapeutics, 21 (4), 595–599 (2008). https://doi.org/10.1016/J.PUPT.2007.12.001 [CrossRef] [PubMed] [Google Scholar]
- M. Burmølle, T. R. Thomsen, M. Fazli, I. Dige, L. Christensen, P. Homøe, M. Tvede, B. Nyvad, T. Tolker-Nielsen, M. Givskov, C. Moser, K. Kirketerp-Møller, H.K. Johansen, N. Høiby, P.Ø. Jensen, S.J. Sørensen, T. Bjarnsholt, Biofilms in chronic infections - a matter of opportunity - monospecies biofilms in multispecies infections. FEMS Immunology & Medical Microbiology, 59 (3), 324–336 (2010). https://doi.org/10.1111/J.1574-695X.2010.00714.X [CrossRef] [PubMed] [Google Scholar]
- K.A. Dafforn, Lewis, J.A., Johnston, E.L. Antifouling strategies: History and regulation, ecological impacts and mitigation. Marine Pollution Bulletin, 62 (3), 453–465 (2011). https://doi.org/10.1016ZJ.MARP0LBUL.2011.01.012 [CrossRef] [PubMed] [Google Scholar]
- I. Fitridge, T. Dempster, J. Guenther, R. de Nys, The impact and control of biofouling in marine aquaculture: A review. Biofouling 28, 649–669 (2012). https://doi.org/10.1080/08927014.2012.700478 [CrossRef] [PubMed] [Google Scholar]
- S. Wu, G. Liu, D. Zhang, C. Li, C. Sun, Purification and biochemical characterization of an alkaline protease from marine bacteria Pseudoalteromonas sp. 129-1. J. Basic Microbiol. 55, 1427–1434 (2015). https://doi.org/10.1002/J0BM.201500327 [CrossRef] [PubMed] [Google Scholar]
- B.K. Carte, Marine natural products as a source of novel pharmacological agents. Curr. Opin. Biotechnol. 4, 275–279 (1993). https://doi.org/10.1016/0958-1669(93)90095-E [CrossRef] [Google Scholar]
- L. Miao, P.Y. Qian, Antagonistic antimicrobial activity of marine fungi and bacteria isolated from marine biofilm and seawaters of Hong Kong. Aquat. Microb. Ecol. 38, 231–238 (2005). https://doi.org/10.3354/AME038231 [CrossRef] [Google Scholar]
- Bakar, N.A. 3, J. Saidin, Checklist of marine sponges off Bidong Archipelagos based on COI gene sequences. J. Sustain. Sci. Manag. 19, 12–19 (2024). http://doi.org/10.46754/jssm.2024.01.002 [CrossRef] [Google Scholar]
- V. Rao, V. Rao, Phytochemicals - A global perspective of their role in nutrition and health. Phytochemicals - A Global Perspective of Their Role in Nutrition and Health (2012). https://doi.org/10.5772/1387 [CrossRef] [Google Scholar]
- Z.B. Ujang, T. Subramaniam, M.M. Diah, H.B. Wahid, B.B. Abdullah, A.H. Bin, A. Rashid, D. Appleton, Bioguided fractionation and purification of natural bioactives obtained from Alpinia conchigera water extract with melanin inhibition activity. J. Biomater. Nanobiotechnol. 265-272 (2013). https://doi.org/10.4236/JBNB.2013.43033 [Google Scholar]
- Pandey, S. Tripathi, Concept of standardization, extraction and pre-phytochemical screening strategies for herbal drug. J. Pharmacogn. Phytochem. 2, 115–119 (2014) [Google Scholar]
- A.R. Abubakar, M. Haque, Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharmacy Bioallied Sci. 12, 1 (2020). https://doi.org/10.4103/JPBS.JPBS_175_19 [CrossRef] [Google Scholar]
- N.A. Jamaludin, K. Bakar, J. Saidin, In vitro biological activity of three marine sponges from Theonella and Haliclona genera collected from Bidong Island, Terengganu, Malaysia. Malaysian Appl. Biol. 52, 51–59 (2023). https://doi.org/10.55230/MABJOURNAL.V52I2.2559 [CrossRef] [Google Scholar]
- C. Estrela, R.G. Ribeiro, C.R.A. Estrela, J.D. Pécora, M.D. Sousa-Neto, Antimicrobial effect of 2% sodium hypochlorite and 2% chlorhexidine tested by different methods. Braz. Dent. J. 14, 58–62 (2003). https://doi.org/10.1590/S0103-64402003000100011 [CrossRef] [PubMed] [Google Scholar]
- C.B. Lineback, C.A. Nkemngong, S.T. Wu, X. Li, P.J. Teska, H.F. Oliver, Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds. Antimicrob. Resist. Infect. Control 7, 1–7 (2018). https://doi.org/10.1186/S13756-018-0447-5/FIGURES/2 [CrossRef] [Google Scholar]
- E.F. Haney, M.J. Trimble, R.E.W. Hancock, Microtiter plate assays to assess antibiofilm activity against bacteria. Nat. Protoc. 16, 2615–2632 (2021). https://doi.org/10.1038/s41596-021-00515-3 [CrossRef] [PubMed] [Google Scholar]
- C. Leroy, C. Delbarre-Ladrat, F. Ghillebaert, M.J. Rochet, C. Compère, D. Combes, A marine bacterial adhesion microplate test using the DAPI fluorescent dye: A new method to screen antifouling agents. Lett. Appl. Microbiol. 44, 372–378 (2007). https://doi.org/10.1111/J.1472-765X.2006.02103.X [CrossRef] [PubMed] [Google Scholar]
- M. Balouiri, M. Sadiki, S.K. Ibnsouda, Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6, 71–79 (2016). https://doi.org/10.1016ZJ.JPHA.2015.11.005 [CrossRef] [Google Scholar]
- X. Song, Y. Ma, J. Fu, A. Zhao, Z. Guo, P.K. Malakar, Y. Pan, Y. Zhao, Effect of temperature on pathogenic and non-pathogenic Vibrio parahaemolyticus biofilm formation. Food Control 73, 485–491 (2017). https://doi.org/10.1016/J.F00DC0NT.2016.08.041 [CrossRef] [Google Scholar]
- M.H. Nadri, Y. Salim, N. Basar, A. Yahya, R.M. Zulkifli, Antioxidant activities and tyrosinase inhibition effects of Phaleria macrocarpa extracts. Afr. J. Tradit. Complement. Altern. Med. 11, 107–111 (2014). https://doi.org/10.4314/AJTCAM.V11I3.16 [CrossRef] [PubMed] [Google Scholar]
- B. Tan, J. Vanitha, Immunomodulatory and antimicrobial effects of some traditional Chinese medicinal herbs: A review. Curr. Med. Chem. 11, 1423–1430 (2004). https://doi.org/10.2174/0929867043365161 [CrossRef] [Google Scholar]
- Lu, W. Hu, Z. Tian, D. Yuan, G. Yi, Y. Zhou, Q. Cheng, J. Zhu, M. Li, Developing natural products as potential anti-biofilm agents. Chinese Med. 14, 1–17 (2019). https://doi.org/10.1186/S13020-019-0232-2/TABLES/3 [CrossRef] [Google Scholar]
- E. Dogan, O. Demir, M. Sertdemir, M.A. Saracli, B. Konuklugil, Screening of selected marine sponges from the coasts of Turkey for antimicrobial activity. IJMS 47, 1193–1198 (2018). http://nopr.niscpr.res.inZhandle/123456789/44482 [Google Scholar]
- K.S. Singh, M.S. Majik, Pyrrole-derived alkaloids of marine sponges and their biological properties. Stud. Nat. Prod. Chem. 62, 377–409 (2019). https://doi.org/10.1016/B978-0-444-64185-4.00010-1 [CrossRef] [Google Scholar]
- J. Sun, J. Wu, B. An, N.J. De Voogd, W. Cheng, W. Lin, Bromopyrrole alkaloids with inhibitory effects against the biofilm formation of Gram-negative bacteria. Marine Drugs 16, 1 (2018). https://doi.org/10.3390/MD16010009 [CrossRef] [Google Scholar]
- S.R. Kelly, P.R. Jensen, T.P. Henkel, W. Fenical, J.R. Pawlik, Effects of Caribbean sponge extracts on bacterial attachment. Aquat. Microb. Ecol. 31, 175–182 (2003). [CrossRef] [Google Scholar]
- H. Zhang, Z. Khalil, M.M. Conte, F. Plisson, R.J. Capon, A search for kinase inhibitors and antibacterial agents: Bromopyrrolo-2-aminoimidazoles from a deep-water Great Australian Bight sponge, Axinella sp. Tetrahedron Lett. 53, 3784–3787 (2012) [CrossRef] [Google Scholar]
- R. Khotimchenko, I. Bryukhovetskiy, M. Khotimchenko, Y. Khotimchenko, Bioactive compounds with antiglioma activity from marine species. Biomedicines 9, 886 (2021). [CrossRef] [PubMed] [Google Scholar]
- J. Govinden-Soulange, D. Marie, S. Kauroo, R. Beesoo, A. Ramanjooloo, Antibacterial properties of marine sponges from Mauritius waters. Trop. J. Pharm. Res. 13, 249–254 (2014). [CrossRef] [Google Scholar]
- Y.P. Cita, A. Suhermanto, O.K. Radjasa, P. Sudharmono, Antibacterial activity of marine bacteria isolated from sponge Xestospongia testudinaria from Sorong, Papua. Asian Pac. J. Trop. Biomed. 7, 450–454 (2017). [CrossRef] [Google Scholar]
- N. Alves Junior, P.M. Meirelles, E. de Oliveira Santos, B. Dutilh, G.G.Z. Silva, R. Paranhos, A.S. Cabral, C. Rezende, T. Iida, R.L. de Moura, Microbial community diversity and physical-chemical features of the Southwestern Atlantic Ocean. Arch. Microbiol. 197, 165–179 (2015). [CrossRef] [PubMed] [Google Scholar]
- D. Batista, R. Costa, A.P. Carvalho, W.R. Batista, C.P.J. Rua, L. de Oliveira, L. Leomil, A.M. Fróes, F.L. Thompson, R. Coutinho, Environmental conditions affect activity and associated microorganisms of marine sponges. Mar. Environ. Res. 142, 59–68 (2018). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.