Open Access
Issue |
BIO Web Conf.
Volume 148, 2024
International Conference of Biological, Environment, Agriculture, and Food (ICoBEAF 2024)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 10 | |
Section | Environment | |
DOI | https://doi.org/10.1051/bioconf/202414802003 | |
Published online | 09 January 2025 |
- N. Peek, M. Sujan, and P. Scott, Digital health and care in pandemic times: impact of COVID-19, BMJ Heal. Care Informatics 27, e100166 (2020). https://doi.org/10.1136/bmjhci-2020-100166 [CrossRef] [Google Scholar]
- M. Sujan, P. Scott, and K. Cresswell, Digital health and patient safety: Technology is not a magic wand, Health Informatics J. 26, 2295 (2020). https://doi.org/10.1177/1460458219876183 [CrossRef] [PubMed] [Google Scholar]
- J. D. Portz, K. L. Ford, K. Doyon, D. B. Bekelman, R. S. Boxer, J. S. Kutner, S. Czaja, and S. Bull, Using Grounded Theory to Inform the Human-Centered Design of Digital Health in Geriatric Palliative Care, J. Pain Symptom Manage. 60, 1181 (2020). https://doi.org/10.1016/j.jpainsymman.2020.06.027 [CrossRef] [Google Scholar]
- M. Roberts, D. Driggs, M. Thorpe, J. Gilbey, M. Yeung, S. Ursprung, A. I. Aviles-Rivero, C. Etmann, C. McCague, L. Beer, J. R. Weir-McCall, Z. Teng, E. Gkrania-Klotsas, A. Ruggiero, A. Korhonen, E. Jefferson, E. Ako, G. Langs, G. Gozaliasl, G. Yang, H. Prosch, J. Preller, J. Stanczuk, J. Tang, J. Hofmanninger, J. Babar, L. E. Sánchez, M. Thillai, P. M. Gonzalez, P. Teare, X. Zhu, M. Patel, C. Cafolla, H. Azadbakht, J. Jacob, J. Lowe, K. Zhang, K. Bradley, M. Wassin, M. Holzer, K. Ji, M. D. Ortet, T. Ai, N. Walton, P. Lio, S. Stranks, T. Shadbahr, W. Lin, Y. Zha, Z. Niu, J. H. F. Rudd, E. Sala, and C.-B. Schönlieb, Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans, Nat. Mach. Intell. 3, 199 (2021). https://doi.org/10.1038/s42256-021-00307-0 [CrossRef] [Google Scholar]
- E. Coiera, The Last Mile: Where Artificial Intelligence Meets Reality, J. Med. Internet Res. 21, e16323 (2019). https://doi.org/10.2196/16323 [CrossRef] [Google Scholar]
- F. Magrabi, E. Ammenwerth, J. B. McNair, N. F. De Keizer, H. Hyppönen, P. Nykänen, M. Rigby, P. J. Scott, T. Vehko, Z. S.-Y. Wong, and A. Georgiou, Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications, Yearb. Med. Inform. 28, 128 (2019). https://doi.org/10.1055/s-0039-1677903. [CrossRef] [PubMed] [Google Scholar]
- M. Sujan, D. Furniss, K. Grundy, H. Grundy, D. Nelson, M. Elliott, S. White, I. Habli, and N. Reynolds, Human factors challenges for the safe use of artificial intelligence in patient care, BMJ Heal. Care Informatics 26, e100081 (2019). https://doi.org/10.1136/bmjhci-2019-100081 [CrossRef] [Google Scholar]
- M. Sujan, R. Pool, and P. Salmon, Eight human factors and ergonomics principles for healthcare artificial intelligence, BMJ Heal. Care Informatics 29, e100516 (2022). https://doi.org/10.1136/bmjhci-2021-100516 [CrossRef] [Google Scholar]
- D. W. Bates, D. Levine, A. Syrowatka, M. Kuznetsova, K. J. T. Craig, A. Rui, G. P. Jackson, and K. Rhee, The potential of artificial intelligence to improve patient safety: a scoping review, Npj Digit. Med. 4, 54 (2021). https://doi.org/10.1038/s41746-021-00423-6 [CrossRef] [Google Scholar]
- M. Hueso, E. Navarro, D. Sandoval, and J. M. Cruzado, Progress in the Development and Challenges for the Use of Artificial Kidneys and Wearable Dialysis Devices, Kidney Dis. 5, 3 (2019). https://doi.org/10.1159/000492932 [CrossRef] [PubMed] [Google Scholar]
- A. Boonstra and M. Laven, Influence of artificial intelligence on the work design of emergency department clinicians a systematic literature review, BMC Health Serv. Res. 22, 1 (2022). https://doi.org/10.1186/S12913-022-08070-7/FIGURES/2 [CrossRef] [Google Scholar]
- T. Davenport and R. Kalakota, The potential for artificial intelligence in healthcare, Futur. Healthc. J. 6, 94 (2019). https://doi.org/10.7861/futurehosp.6-2-94 [CrossRef] [Google Scholar]
- P. Martelletti, M. Leonardi, M. Ashina, R. Burstein, S. J. Cho, A. Charway-Felli, D. W. Dodick, R. Gil-Gouveia, L. Grazzi, C. Lampl, A. MaassenVanDenBrink, M. T. Minen, D. D. Mitsikostas, J. Olesen, M. O. Owolabi, U. Reuter, E. Ruiz de la Torre, S. Sacco, T. J. Schwedt, G. Serafini, N. Surya, C. Tassorelli, S. J. Wang, Y. Wang, T. Wijeratne, and A. Raggi, Rethinking headache as a global public health case model for reaching the SDG 3 HEALTH by 2030, J. Headache Pain 24, 1 (2023). https://doi.org/10.1186/S10194-023-01666-2/TABLES/1 [CrossRef] [Google Scholar]
- H. Zhang and Y. Zhang, Rational Design of Flexible Mechanical Force Sensors for Healthcare and Diagnosis, Materials (Basel). 17, 123 (2023). https://doi.org/10.3390/ma17010123 [CrossRef] [Google Scholar]
- A. B. Farris, J. Vizcarra, M. Amgad, L. A. D. Cooper, D. Gutman, and J. Hogan, Artificial intelligence and algorithmic computational pathology: an introduction with renal allograft examples, Histopathology 78, 791 (2021). https://doi.org/10.1111/his.14304 [CrossRef] [PubMed] [Google Scholar]
- J. Yin, K. Y. Ngiam, and H. H. Teo, Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic Review, J. Med. Internet Res. 23, e25759 (2021). https://doi.org/10.2196/25759 [CrossRef] [Google Scholar]
- M. Krass, P. Henderson, M. M. Mello, D. M. Studdert, and D. E. Ho, How US law will evaluate artificial intelligence for covid-19, BMJ 372, n234 (2021). https://doi.org/10.1136/bmj.n234 [CrossRef] [PubMed] [Google Scholar]
- T. J. Loftus, J. A. Balch, J. L. Marquard, J. M. Ray, B. S. Alper, N. Ojha, A. Bihorac, G. Melton-Meaux, G. Khanna, and C. J. Tignanelli, Longitudinal clinical decision support for assessing decisions over time: State-of-the-art and future directions, Digit. Heal. 10, (2024). https://doi.org/10.1177/20552076241249925 [Google Scholar]
- M. Rigby, E. Ammenwerth, and J. Talmon, Forward Outlook: The Need for Evidence and for Action in Health Informatics, PubMed 355 (2016) [Google Scholar]
- L. A. Lebrun-Harris, S. R. Parasuraman, C. Norton, A. A. Livinski, R. Ghandour, S. J. Blumberg, and M. D. Kogan, Bibliometric Analysis of Research Studies Based on Federally Funded Children’s Health Surveys, Acad. Pediatr. 21, 462 (2021). https://doi.org/10.1016/j.acap.2020.08.004 [CrossRef] [Google Scholar]
- G. Liu, J. Zhao, G. Tian, S. Li, and Y. Lu, Visualizing knowledge evolution trends and research hotspots of artificial intelligence in colorectal cancer: A bibliometric analysis, Front. Oncol. 12, 925924 (2022). https://doi.org/10.3389/FONC.2022.925924/BIBTEX [CrossRef] [Google Scholar]
- A. Fauzy, Mapping Research Excellence Based on Scopus Indexed Publications, Ardana Media (2016) [Google Scholar]
- T. Ahmad, E. D. B. Ornos, S. Ahmad, R. K. Al-Wassia, I. Mushtaque, S. M. Shah, B. Al-Omari, M. Baig, and K. Tang, Global Research Mapping of Psycho-Oncology Between 1980 and 2021: A Bibliometric Analysis, Front. Psychol. 13, 947669 (2022). https://doi.org/10.3389/FPSYG.2022.947669/BIBTEX [CrossRef] [Google Scholar]
- A. Q. Wilson, C. Wombles, R. E. Heidel, and K. L. Grabeel, The status of scholarly efforts of librarians on health literacy: a bibliometric analysis, J. Med. Libr. Assoc. 110, 166 (2021). https://doi.org/10.5195/jmla.2022.1253 [CrossRef] [Google Scholar]
- Ž. Korde, S. Šuriņa, and K. Mārtinsone, Research trends in drama therapy: a bibliometric analysis based on Scopus, Front. Psychol. 14, 1327656 (2023). https://doi.org/10.3389/FPSYG.2023.1327656/BIBTEX [CrossRef] [Google Scholar]
- R. Rohanda and Y. Winoto, Bibliometric Analysis of Collaboration Level, Author Productivity, and Article Profile of Information & Library Studies Journal 2014-2018, Pustabiblia J. Libr. Inf. Sci. 3, 1 (2019). https://doi.org/10.18326/pustabiblia.v3i1.1-16 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.