Open Access
Issue
BIO Web Conf.
Volume 148, 2024
International Conference of Biological, Environment, Agriculture, and Food (ICoBEAF 2024)
Article Number 02020
Number of page(s) 16
Section Environment
DOI https://doi.org/10.1051/bioconf/202414802020
Published online 09 January 2025
  • G. Afriyanti, A. Mariya, C. Natalia, S. Nispuana, M. Farhan Wijaya, and M. Y. Phalepi, The role ff the agricultural sector on economic growth in Indonesia. Indonesian J. of Multidisciplin. Sci. (IJoMS) 2, 167 (2023) [CrossRef] [Google Scholar]
  • I. Mukhlis and Ö. S. Gürçam, The role of agricultural sector in food security and poverty alleviation in Indonesia and Turkey. Asian J. of Agricul. Extens. Eco. & Socio. 430 (2022) [Google Scholar]
  • A. Ashok and D. S. Kumar, Laboratory scale bioreactor studies on the production of L-asparaginase using Rhizopus microsporus IBBL-2 and Trichosporon asahii IBBLA1. Biocatal Agric Biotechnol. 34, (2021) [Google Scholar]
  • S. B. Esparza-Naranjo et al., Potential for the biodegradation of atrazine using leaf Litter fungi from a subtropical protection area. Curr. Microbiol. 78, 358 (2021) [CrossRef] [PubMed] [Google Scholar]
  • J.V. Rohit, R.K. Singhal, and S.K. Kailasa, Dithiocarbamate-calixarene functionalized gold nanoparticles as a selective and sensitive colorimetric probe for assay of metsulfuron-methyl herbicide via non-covalent interactions. Sens. Actuators B Chem. 237, 1044 (2016) [CrossRef] [Google Scholar]
  • A.S. Afify et al., Development of GC-MS/MS method for environmental monitoring of 49 pesticide residues in food commodities in Al-Rass, Al-Qassim region, Saudi Arabia. Arabian J. of Chem. 15, 104199 (2022) [Google Scholar]
  • C.Y. Ke et al., Bioremediation of oily sludge by solid complex bacterial agent with a combined two-step process. Ecotoxicol Environ. Saf. 208, 111673 (2021) [CrossRef] [Google Scholar]
  • H. Zhang, X. Yuan, T. Xiong, H. Wang, and L. Jiang, Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chem. Engineer. J. 398, (2020) [Google Scholar]
  • A.A. Zhang, P.P. Sutar, Q. Bian, X.M. Fang, J. B. Ni, and H. W. Xiao, Pesticide residue elimination for fruits and vegetables: the mechanisms, applications, and future trends of thermal and non-thermal technologies. J. of Future Foods 2, 223 (2022) [CrossRef] [Google Scholar]
  • M. E. Aluffi, C. S. Carranza, N. Benito, K. Magnoli, C.E. Magnoli, and C.L. Barberis, Isolation of culturable mycota from Argentinean soils exposed or not-exposed to pesticides and determination of glyphosate tolerance of fungal species in media supplied with the herbicide. Rev. Argent. Microbiol. 52, 221 (2020) [Google Scholar]
  • C. Qu et al., Residues of hexachlorobenzene and chlorinated cyclodiene pesticides in the soils of the Campanian Plain, southern Italy. Environmental Pollution, 231, pp. 1497 (2017) [CrossRef] [Google Scholar]
  • L. T. Nhi-Cong et al., Advanced materials for immobilization of purple phototrophic bacteria in bioremediation of oil-polluted wastewater. Chemosphere, 278, p. 130464 (2021) [CrossRef] [Google Scholar]
  • H. C. Lee, H. Chen, M. C. Lin, C. H. Chang, M. J. Chuang, and H. Y. Yin, “A method for ex-post benefit-cost assessment for engineering remediation of debris flow impacts,” Eng Geol, 286, 106084 (2021) [CrossRef] [Google Scholar]
  • S. M. Miles, E. Asiedu, A. lynne Balaberda, and A. C. Ulrich, Oil sands process affected water sourced Trichoderma harzianum demonstrates capacity for mycoremediation of naphthenic acid fraction compounds. Chemosphere 258, 127281 (2020) [CrossRef] [PubMed] [Google Scholar]
  • M. A. Sadañoski et al., Mycoremediation of high concentrations of polychlorinated biphenyls with Pleurotus sajor-caju LBM 105 as an effective and cheap treatment. J. Environ. Chem. Eng. 7, (2019) [Google Scholar]
  • A. S. Purnomo, A. Sariwati, and I. Kamei, Synergistic interaction of a consortium of the brown-rot fungus Fomitopsis pinicola and the bacterium Ralstonia pickettii for DDT biodegradation. Heliyon, 6, e04027 (2020) [CrossRef] [Google Scholar]
  • J. Lee, Y. Ko, S. Kim, and H. Hur, Highly effective biosorption capacity of Cladosporium sp. strain F1 to lead phosphate mineral and perovskite solar cell PbI 2, J. Hazard Mater. 442, 130106 (2023) [CrossRef] [Google Scholar]
  • N. Li et al., Response of extracellular carboxylic and thiol ligands (oxalate, thiol compounds) to Pb2+ stress in Phanerochaete chrysosporium. Environ. Sci. and Pollut. Res. 22, 12655 (2015) [CrossRef] [PubMed] [Google Scholar]
  • P. Matúš, P. Littera, B. Farkas, and M. Urík, Review on performance of aspergillus and penicillium species in biodegradation of organochlorine and organophosphorus pesticides. Microorganisms 11, (2023) [Google Scholar]
  • A. Vaksmaa, S. Guerrero-Cruz, P. Ghosh, E. Zeghal, V. Hernando-Morales, and H. Niemann, Role of fungi in bioremediation of emerging pollutants. Frontiers in Marine Science, 10. Frontiers Media S.A., (2023) [CrossRef] [Google Scholar]
  • R. Bhadouria, S. Das, A. Kumar, R. Singh, and V. K. Singh, Mycoremediation of agrochemicals. in Agrochemicals Detection, Treatment and Remediation: Pesticides and Chemical Fertilizers, (Elsevier, 2020) [Google Scholar]
  • K. L. Njoku, P. O. Eludini, A. A. Adesuyi, and E. O. Ude, Physiological and molecular characterization of active fungi in pesticides contaminated soils for degradation of glyphosate (2020) [Google Scholar]
  • M. S. Wani, Y. R. Tantray, N. A. Malik, M. I. Dar, and T. Ahmad, Microbial bioremediation of pesticides/herbicides in soil. in Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs, (Springer International Publishing, 2021) [Google Scholar]
  • E. Abatenh, B. Gizaw, Z. Tsegaye, and M. Wassie, The role of microorganisms in bioremediation-A Review. Open J. Environ. Biol. 2, 38 (2017) [Google Scholar]
  • S. Kumar, G. Kaushik, M. A. Dar, S. Nimesh, U. J. López-Chuken, and J. F. Villarreal-Chiu, Microbial degradation of organophosphate pesticides: A Review. Pedosphere 28, 190 (2018) [CrossRef] [Google Scholar]
  • S. Mwafulirwa, Isolation characterization and diversity of indigenous pesticide degrading microbes from selected agro ecological zones of Malawi. Asian Plant Res. J. 11, 29 (2023) [CrossRef] [Google Scholar]
  • S. Gangola, S. Joshi, G. Bhandari, P. Bhatt, S. Kumar, and S. C. Pandey, Omics approaches to pesticide biodegradation for sustainable environment. (Academic Press, 2023) [Google Scholar]
  • F. Mohamadhasani and M. Rahimi, Growth response and mycoremediation of heavy metals by fungus Pleurotus sp.. Sci. Rep. 12, (2022) [CrossRef] [Google Scholar]
  • M. Lykogianni, E. Bempelou, F. Karamaouna, and K. A. Aliferis, Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. Sci. of the Total Environ. 795, 148625 (2021) [CrossRef] [Google Scholar]
  • B. Zhou and X. Li, The monitoring of chemical pesticides pollution on ecological environment by GIS. Environ. Technol. Innov. 23, 101506 (2021) [CrossRef] [Google Scholar]
  • J. Hu et al., Raman spectrum classification based on transfer learning by a convolutional neural network: Application to pesticide detection. Spectrochim Acta A Mol. Biomol. Spectrosc. 265, 120366 (2022) [CrossRef] [Google Scholar]
  • S. Kolesnyk, N. Bubalo, M. Prodanchuk, and P. Zhminko, Differences in classification for skin corrosion/irritation in EU and Ukraine: Case study of alternative (in vitro and in silico)methods application for classification of pesticide active ingredient imazamox. Toxicology in Vitro, 60, 71 (2019) [CrossRef] [Google Scholar]
  • S. Poomagal, R. Sujatha, P. S. Kumar, and D. V. N. Vo, A fuzzy cognitive map approach to predict the hazardous effects of malathion to environment (air, water and soil). Chemosphere, 263, 127926 (2021) [CrossRef] [Google Scholar]
  • O. A. Salama, M. M. Attia, and M. A. S. Abdelrazek, Modulatory effects of swimming exercise against malathion induced neurotoxicity in male and female rats. Pestic. Biochem. Physiol. 157, 13 (2019) [CrossRef] [Google Scholar]
  • W. Wang et al., Toxic effects and possible mechanisms following malathion exposure in porcine granulosa cells. Environ. Toxicol. Pharmacol. 64, 172 (2018) [CrossRef] [Google Scholar]
  • J. Lee, Y. Ko, S. Kim, and H. Hur, Highly effective biosorption capacity of Cladosporium sp. strain F1 to lead phosphate mineral and perovskite solar cell PbI 2. J. Hazard Mater. 442, 130106 (2023) [CrossRef] [Google Scholar]
  • B. Seth, A. Yadav, S. Agarwal, S. K. Tiwari, and R. K. Chaturvedi, Inhibition of the transforming growth factor-/SMAD cascade mitigates the anti-neurogenic effects of the carbamate pesticide carbofuran. J. of Biolog. Chem. 292, 19423 (2017) [CrossRef] [Google Scholar]
  • J. Zhang et al., Carbamate pesticides exposure and delayed physical development at the age of seven: Evidence from the SMBCS study. Environ. Int. 160, 107076 (2022) [CrossRef] [Google Scholar]
  • Z. Qi et al., Effects of prenatal exposure to pyrethroid pesticides on neurodevelopment of 1-year-old children: A birth cohort study in China. Ecotoxicol. Environ. Saf. 234, 113384 (2022) [CrossRef] [Google Scholar]
  • N. Bravo, M. Garí, and J. O. Grimalt, Occupational and residential exposures to organophosphate and pyrethroid pesticides in a rural setting. Environ. Res. 214, 1 (2022) [Google Scholar]
  • W. Bai, G. Qin, J. Wang, L. Li, and Y. Ni, 2-Aminoterephthalic acid co-coordinated Co-MOF fluorescent probe for highly selective detection of the organophosphorus pesticides with p-nitrophenyl group in water systems. Dyes and Pigments 193, 109473 (2021) [CrossRef] [Google Scholar]
  • D. González-Abradelo et al., First demonstration that ascomycetous halophilic fungi (Aspergillus sydowii and Aspergillus destruens) are useful in xenobiotic mycoremediation under high salinity conditions. Bioresour. Technol. 279, 287 (2019) [CrossRef] [Google Scholar]
  • J. Chang et al., Bioremediation of Hg-contaminated soil by combining a novel Hg-volatilizing Lecythophora sp. fungus, DC-F1, with biochar: Performance and the response of soil fungal community. Sci. of the Total Environ. 671, 676 (2019) [Google Scholar]
  • Y. Xie et al., Characterization of the Cd-resistant fungus Aspergillus aculeatus and its potential for increasing the antioxidant activity and photosynthetic efficiency of rice. Ecotoxicol. Environ. Saf. 171, 373 (2019) [CrossRef] [Google Scholar]
  • A. Hassan, A. Pariatamby, I. C. Ossai, and F. S. Hamid, Bioaugmentation assisted mycoremediation of heavy metal and/metalloid landfill contaminated soil using consortia of filamentous fungi. Biochem. Eng. J. 157, 107550 (2020) [CrossRef] [Google Scholar]
  • Y. Wang, X. Ma, M. Saleem, Y. Yang, and Q. Zhang, Effects of corn stalk biochar and pyrolysis temperature on wheat seedlings growth and soil properties stressed by herbicide sulfentrazone. Environ. Technol. Innov. 25, 102208 (2022) [CrossRef] [Google Scholar]
  • D. Obregon, O. R. Guerrero, E. Stashenko, and K. Poveda, Natural habitat partially mitigates negative pesticide effects on tropical pollinator communities. Glob. Ecol. Conserv. 28, e01668 (2021) [Google Scholar]
  • G. Morales-Guzmán et al., Diesel degradation by emulsifying bacteria isolated from soils polluted with weathered petroleum hydrocarbons. Appl. Soil Ecol. 121, 127 (2017) [CrossRef] [Google Scholar]
  • G. Teran-Cuadrado and E. Polo-Cuadrado, Effectiveness of a bio-catalytic agent used in the bioremediation of crude oil-polluted seawater. Heliyon 7, (2021) [Google Scholar]
  • H. S. Saudy, I. M. El-Metwally, and M. G. Shahin, Co-application effect of herbicides and micronutrients on weeds and nutrient uptake in flooded irrigated rice: Does it have a synergistic or an antagonistic effect?. Crop Protect. 149, 105755 (2021) [CrossRef] [Google Scholar]
  • J. Abraham and A. Gajendiran, Biodegradation of fipronil and its metabolite fipronil sulfone by Streptomyces rochei strain AJAG7 and its use in bioremediation of contaminated soil. Pestic. Biochem, Physiol. 155, 90 (2019) [Google Scholar]
  • L. Leino et al., Classification of the glyphosate target enzyme (5-enolpyruvylshikimate-3-phosphate synthase) for assessing sensitivity of organisms to the herbicide. J. Hazard Mater. 408, 1 (2021) [Google Scholar]
  • S. Ruuskanen et al., Ecology & evolution ecosystem consequences of herbicides : the role of microbiome. Trends Ecol. Evol. 38, 1 (2022) [Google Scholar]
  • C. Li et al., Effects of interactions between polygalacturonase and pesticide residues during enzymatic hydrolysis on the yield of apple juice. Lwt 147, 111562 (2021) [CrossRef] [Google Scholar]
  • A. Gupta, R. F. Landis, and V. M. Rotello, Nanoparticle-Based antimicrobials : Surface functionality is critical. 5, 1 (2018) [Google Scholar]
  • A. Sarker, R. Nandi, J. E. Kim, and T. Islam, Remediation of chemical pesticides from contaminated sites through potential microorganisms and their functional enzymes: Prospects and challenges. Environ. Technol. Innov. 23, 101777 (2021) [CrossRef] [Google Scholar]
  • S. F. Ahmed et al., Heavy metal toxicity, sources, and remediation techniques for contaminated water and soil. Environ. Technol. Innov. 25, 102114 (2022) [CrossRef] [Google Scholar]
  • P. Kaur and C. Balomajumder, Bioremediation process optimization and effective reclamation of mixed carbamate-contaminated soil by newly isolated Acremonium sp.. Chemosphere 249, 125982 (2020) [CrossRef] [PubMed] [Google Scholar]
  • A. P. Pinto et al., Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures. Sci. of the Total Environ. 435-436, 402 (2012) [CrossRef] [Google Scholar]
  • [60] C. L. Barberis, C. S. Carranza, K. Magnoli, N. Benito, and C. E. Magnoli, Development and removal ability of non-toxigenic Aspergillus section Flavi in presence of atrazine, chlorpyrifos and endosulfan. Rev Argent Microbiol, vol. 51, no. 1, pp. 3-11, Jan. 2019, https://doi.org/10.1016/j.ram.2018.03.002 [PubMed] [Google Scholar]
  • G. D. A. Pinto, I. M. Castro, M. A. L. Miguel, and M. G. B. Koblitz, Lactic acid bacteria - Promising technology for organophosphate degradation in food: A pilot study. LWT 110, 353 (2019) [CrossRef] [Google Scholar]
  • A. Abdel-Fattah Mostafa, M. T. Yassin, T. M. Dawoud, F. O. Al-Otibi, and S. R. Sayed, Mycodegradation of diazinon pesticide utilizing fungal strains isolated from polluted soil. Environ. Res. 212, 113421 (2022) [CrossRef] [Google Scholar]
  • J. Sivakumar, Rejuvenation of pesticide polluted soil from the isolated microbial flora of agricultural field. Asian J. of Sci. and Appl. Tech. 12, 25 (2023) [Google Scholar]
  • A. S. Purnomo, A. Sariwati, and I. Kamei, Synergistic interaction of a consortium of the brown-rot fungus Fomitopsis pinicola and the bacterium Ralstonia pickettii for DDT biodegradation. Heliyon 6, e04027 (2020) [CrossRef] [PubMed] [Google Scholar]
  • O. Akhtar, H. K. Kehri, and I. Zoomi, Arbuscular mycorrhiza and Aspergillus terreus inoculation along with compost amendment enhance the phytoremediation of Cr-rich technosol by Solanum lycopersicum under field conditions. Ecotoxicol. Environ. Saf. 201, 110869 (2020) [CrossRef] [Google Scholar]
  • P. Kaur and C. Balomajumder, Bioremediation process optimization and effective reclamation of mixed carbamate-contaminated soil by newly isolated Acremonium sp.. Chemosphere 249, 125982 (2020) [CrossRef] [PubMed] [Google Scholar]
  • P. Kaur and C. Balomajumder, Effective mycoremediation coupled with bioaugmentation studies: An advanced study on newly isolated Aspergillus sp. in Type-II pyrethroid-contaminated soil. Environ. Pollut. 261, 114073 (2020) [CrossRef] [Google Scholar]
  • C. L. Barberis, C. S. Carranza, K. Magnoli, N. Benito, and C. E. Magnoli, Development and removal ability of non-toxigenic Aspergillus section Flavi in presence of atrazine, chlorpyrifos and endosulfan. Rev. Argent. Microbiol. 51, 3 (2019) [Google Scholar]
  • P. R. S. Soares, W. G. Birolli, I. M. Ferreira, and A. L. M. Porto, Biodegradation pathway of the organophosphate pesticides chlorpyrifos, methyl parathion and profenofos by the marine-derived fungus Aspergillus sydowii CBMAI 935 and its potential for methylation reactions of phenolic compounds. Mar. Pollut. Bull. 166, (2021) [Google Scholar]
  • M. Govarthanan et al., Rapid biodegradation of chlorpyrifos by plant growth-promoting psychrophilic Shewanella sp. BT05: An eco-friendly approach to clean up pesticide-contaminated environment. Chemosphere 247, 125948 (2020) [Google Scholar]
  • A. P. Pinto et al., Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures. Sci. of the Total Environ. 435-436, 402 (2012) [CrossRef] [Google Scholar]
  • M. A. Zhao, H. Gu, C. J. Zhang, I. H. Jeong, J. H. Kim, and Y. Z. Zhu, Metabolism of insecticide diazinon byCunninghamella elegansATCC36112. RSC Adv. 10, 19659 (2020) [CrossRef] [Google Scholar]
  • S. O. Egbewale, A. Kumar, M. P. Mokoena, and A. O. Olaniran, Metabolic biodegradation pathway of fluoranthene by indigenous Trichoderma lixii and Talaromyces pinophilus spp.. Catalysts. 13, (2023) [Google Scholar]
  • A. P. Pinto, D. M. Teixeira, A. T. Caldeira, and S. C. Rodrigues, Biodegradation of pesticides by adapted fungi. Potential use on biopurification systems?. in Agrochemicals Detection, Treatment and Remediation: Pesticides and Chemical Fertilizers, (Elsevier, 2020) [Google Scholar]
  • N. Khan et al., Mycelial nutrient transfer promotes bacterial co-metabolic organochlorine pesticide 1 degradation in nutrient-deprived environments 2 3 4, [Google Scholar]
  • S. Rana, P. Mardarveran, R. Gupta, L. Singh, and Z. ab Wahid, Role of Microbes in Degradation of Chemical Pesticides. in Microbes and Enzymes in Soil Health and Bioremediation, A. Kumar and S. Sharma, Eds., (Singapore: Springer Singapore, 2019) [Google Scholar]
  • F. E. 1 Adelowo, O. A. 2 Olu-Arotiowa, and O. S. 1 Amuda, Advances in Bioscience and Bioengineering Biodegradation of Glyphosate by Fungi Species. 2, 104 (2014) [Google Scholar]
  • S. Anode and J. Onguso, Current Methods of Enhancing Bacterial Bioremediation of Pesticide Residues in Agricultural Farmlands. in Microbial Rejuvenation of Polluted Environment: Volume 2, D. G. Panpatte and Y. K. Jhala, Eds., (Singapore: Springer Singapore, 2021) [Google Scholar]
  • N. Khan et al., Mycelial nutrient transfer promotes bacterial co-metabolic organochlorine pesticide degradation in nutrient-deprived environments. ISME J. 17, 570 (2023) [CrossRef] [PubMed] [Google Scholar]
  • R. Kataoka, Biodegradability and biodegradation pathways of chlorinated cyclodiene insecticides by soil fungi. J. Pestic. Sci. 43, 314 (2018) [CrossRef] [PubMed] [Google Scholar]
  • T. Wang, Mechanism study of cyfluthrin biodegradation by Photobacterium ganghwense with comparative metabolomics. Appl. Microbiol. Biotechnol. 103, 473 (2019) [CrossRef] [PubMed] [Google Scholar]
  • E. R. Rene, E. Sahinkaya, A. Lewis, and P. N. L. Lens, Sustainable heavy metal remediation Volume 2: Cas. studi. 8, (2017) [Google Scholar]
  • P. Anusha et al., Assessment of hexavalent chromium (VI) biosorption competence of indigenous Aspergillus tubingensis AF3 isolated from bauxite mine tailing. Chemosphere 282, 131055 (2021) [CrossRef] [PubMed] [Google Scholar]
  • A. Kumar, S. Arora, K. K. Jain, and K. K. Sharma, Metabolic coupling in the co-cultured fungal-yeast suite of Trametes ljubarskyi and Rhodotorula mucilaginosa leads to hypersecretion of laccase isozymes. Fungal. Biol. 123, 913 (2019) [CrossRef] [Google Scholar]
  • Y. H. Lee, N. K. Verma, and T. Thanabalu, Prebiotics in atopic dermatitis prevention and management. J. Funct. Foods 78, 104352 (2021) [CrossRef] [Google Scholar]
  • D. Tian et al., A new insight into lead (II) tolerance of environmental fungi based on a study of Aspergillus niger and Penicillium oxalicum. Environ. Microbiol. 21, 471 (2019) [CrossRef] [Google Scholar]
  • J. Wang, Biotransformation and detoxification of the neonicotinoid insecticides nitenpyram and dinotefuran by Phanerochaete sordida YK-624. Environ. Pollut. 252, 856 (2019) [CrossRef] [Google Scholar]
  • B. V. Mohite, S. H. Koli, C. P. Narkhede, S. N. Patil, and S. V. Patil, Prospective of Microbial Exopolysaccharide for Heavy Metal Exclusion. Appl. Biochem. Biotechnol. 183, 582 (2017) [CrossRef] [PubMed] [Google Scholar]
  • O. A. Salama, M. M. Attia, and M. A. S. Abdelrazek, Modulatory effects of swimming exercise against malathion induced neurotoxicity in male and female rats. Pestic. Biochem. Physiol. 157, 13 (2019) [CrossRef] [Google Scholar]
  • S. Jain et al., Exogenous addition of silicon alleviates metsulfuron methyl induced stress in wheat seedlings. Plant Physiol. and Biochem. 167, 705 (2021) [CrossRef] [Google Scholar]
  • A. Hassan, A. Pariatamby, I. C. Ossai, and F. S. Hamid, Bioaugmentation assisted mycoremediation of heavy metal and/metalloid landfill contaminated soil using consortia of filamentous fungi. Biochem. Eng. J. 157, 107550 (2020) [CrossRef] [Google Scholar]
  • M. A. Ram, Route of Exposure and Impact of Pesticides Pollution on Human Health and Aquatic Ecosystem. Int. J. of Zoolog. Investig. 08, 85 (2022) [CrossRef] [Google Scholar]
  • S. Keshavarz, F. Faraji, F. Rashchi, and M. Mokmeli, Bioleaching of manganese from a low-grade pyrolusite ore using Aspergillus niger: Process optimization and kinetic studies. J. Environ. Manag. 285, 112153 (2021) [CrossRef] [Google Scholar]
  • P. Tripathi et al., Bioremediation of arsenic by soil methylating fungi: Role of Humicola sp. strain 2WS1 in amelioration of arsenic phytotoxicity in Bacopa monnieri L. Sci. of the Total Environ. 716, 136758 (2020) [CrossRef] [Google Scholar]
  • L. Hou, L. Zhang, X. Chen, X. Li, Zengqiang Zhang, and Y. B. Lin, The benefits of biochar: Enhanced cadmium remediation, inhibited precursor production of nitrous oxide and a short-term disturbance on rhizosphere microbial community. Environ. Pollut. 272, 116040 (2021) [CrossRef] [Google Scholar]
  • D. Damodaran, K. Vidya Shetty, and B. Raj Mohan, Uptake of certain heavy metals from contaminated soil by mushroom-Galerina vittiformis. Ecotoxicol. Environ. Saf. 104, 414 (2014) [CrossRef] [Google Scholar]
  • D. Damodaran, K. Vidya Shetty, and B. Raj Mohan, Effect of chelaters on bioaccumulation of Cd (II), Cu (II), Cr (VI), Pb (II) and Zn (II) in Galerina vittiformis from soil. Int. Biodeterior Biodegradation 85, 182 (2013) [CrossRef] [Google Scholar]
  • D. Mani and C. Kumar, Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. Int. J. of Environ. Sci. and Tech. 11, 843 (2014) [CrossRef] [Google Scholar]
  • P. Dey, Mechanistic insight to mycoremediation potential of a metal resistant fungal strain for removal of hazardous metals from multimetal pesticide matrix. Environ. Pollut. 262, (2020) [Google Scholar]
  • O. O. Kuforiji and I. O. Fasidi, Enzyme activities of Pleurotus tuber-regium (Fries) Singer, cultivated on selected agricultural wastes. Bioresour. Technol. 99, 4275 (2008) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.