Open Access
Issue |
BIO Web Conf.
Volume 148, 2024
International Conference of Biological, Environment, Agriculture, and Food (ICoBEAF 2024)
|
|
---|---|---|
Article Number | 04001 | |
Number of page(s) | 17 | |
Section | Food | |
DOI | https://doi.org/10.1051/bioconf/202414804001 | |
Published online | 09 January 2025 |
- Project Everyone, “The 17 Goals: Responsible Consumption and Production,” The Global Goals. https://www.globalgoals.org/goals/12-responsible-consumption-and-production/ (accessed May 14, 2024). [Google Scholar]
- D. Dutta and N. Sit, “Application of natural extracts as active ingredient in biopolymer based packaging systems,” J. Food Sci. Technol., vol. 60, no. 7, pp. 1888–1902, Jul. 2023, doi: 10.1007/s13197-022-05474-5. [CrossRef] [PubMed] [Google Scholar]
- A. Ali and S. Ahmed, “Recent Advances in Edible Polymer Based Hydrogels as a Sustainable Alternative to Conventional Polymers,” J. Agric. Food Chem., vol. 66, no. 27, pp. 6940–6967, Jul. 2018, doi: 10.1021/acs.jafc.8b01052. [CrossRef] [PubMed] [Google Scholar]
- M. Asgher, S. A. Qamar, M. Bilal, and H. M. N. Iqbal, “Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials,” Food Res. Int., vol. 137, p. 109625, Nov. 2020, doi: 10.1016/j.foodres.2020.109625. [CrossRef] [Google Scholar]
- S. D. F. Mihindukulasuriya and L.-T. Lim, “Nanotechnology development in food packaging: A review,” Trends Food Sci. Technol., vol. 40, no. 2, pp. 149–167, Dec. 2014, doi: 10.1016/j.tifs.2014.09.009. [CrossRef] [Google Scholar]
- C. G. Otoni et al., “Recent Advances on Edible Films Based on Fruits and Vegetables—A Review,” Compr. Rev. Food Sci. Food Saf., vol. 16, no. 5, pp. 1151–1169, Sep. 2017, doi: 10.1111/1541-4337.12281. [CrossRef] [Google Scholar]
- D. C. Vodnar, O. L. Pop, F. V. Dulf, and C. Socaciu, “Antimicrobial Efficiency of Edible Films in Food Industry,” Not. Bot. Horti Agrobot. Cluj-Napoca, vol. 43, no. 2, pp. 302–312, Dec. 2015, doi: 10.15835/nbha43210048. [CrossRef] [Google Scholar]
- K. Kraśniewska and M. Gniewosz, “Substances with Antibacterial Activity in Edible Films – A Review,” Polish J. Food Nutr. Sci., vol. 62, no. 4, pp. 199–206, Dec. 2012, doi: 10.2478/v10222-12-0059-3. [CrossRef] [Google Scholar]
- H. P. Ramesh and R. N. Tharanathan, “Carbohydrates—The Renewable Raw Materials of High Biotechnological Value,” Crit. Rev. Biotechnol., vol. 23, no. 2, pp. 149–173, Jan. 2003, doi: 10.1080/713609312. [CrossRef] [PubMed] [Google Scholar]
- S. A. Mir, B. N. Dar, A. A. Wani, and M. A. Shah, “Effect of plant extracts on the techno-functional properties of biodegradable packaging films,” Trends Food Sci. Technol., vol. 80, pp. 141–154, Oct. 2018, doi: 10.1016/j.tifs.2018.08.004. [CrossRef] [Google Scholar]
- S. Ahmed et al., “Research progress on antimicrobial materials for food packaging,” Crit. Rev. Food Sci. Nutr., vol. 62, no. 11, pp. 3088–3102, Apr. 2022, doi: 10.1080/10408398.2020.1863327. [CrossRef] [PubMed] [Google Scholar]
- R. K. Deshmukh and K. K. Gaikwad, “Natural antimicrobial and antioxidant compounds for active food packaging applications,” Biomass Convers. Biorefinery, vol. 14, no. 4, pp. 4419–4440, Feb. 2024, doi: 10.1007/s13399-022-02623-w. [CrossRef] [Google Scholar]
- M. Soltani Firouz, K. Mohi-Alden, and M. Omid, “A critical review on intelligent and active packaging in the food industry: Research and development,” Food Res. Int., vol. 141, p. 110113, Mar. 2021, doi: 10.1016/j.foodres.2021.110113. [CrossRef] [Google Scholar]
- A. S. A. Mohammed, M. Naveed, and N. Jost, “Polysaccharides; Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine (A Review of Current Applications and Upcoming Potentialities),” J. Polym. Environ., vol. 29, no. 8, pp. 2359–2371, Aug. 2021, doi: 10.1007/s10924-021-02052-2. [CrossRef] [PubMed] [Google Scholar]
- A. Ferreira, V. Alves, and I. Coelhoso, “Polysaccharide-Based Membranes in Food Packaging Applications,” Membranes (Basel)., vol. 6, no. 2, p. 22, Apr. 2016, doi: 10.3390/membranes6020022. [CrossRef] [Google Scholar]
- F. Freitas, V. D. Alves, M. A. Reis, J. G. Crespo, and I. M. Coelhoso, “Microbial polysaccharide‐based membranes: Current and future applications,” J. Appl. Polym. Sci., vol. 131, no. 6, Mar. 2014, doi: 10.1002/app.40047. [CrossRef] [Google Scholar]
- J.-W. Rhim, H.-M. Park, and C.-S. Ha, “Bio-nanocomposites for food packaging applications,” Prog. Polym. Sci., vol. 38, no. 10–11, pp. 1629–1652, Oct. 2013, doi: 10.1016/j.progpolymsci.2013.05.008. [CrossRef] [Google Scholar]
- A. L. M. P. Leite, C. D. Zanon, and F. C. Menegalli, “Isolation and characterization of cellulose nanofibers from cassava root bagasse and peelings,” Carbohydr. Polym., vol. 157, pp. 962–970, Feb. 2017, doi: 10.1016/j.carbpol.2016.10.048. [CrossRef] [Google Scholar]
- C. S. Dzah et al., “The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review,” Food Biosci., vol. 35, p. 100547, Jun. 2020, doi: 10.1016/j.fbio.2020.100547. [CrossRef] [Google Scholar]
- D. Wei et al., “Antimicrobial paper obtained by dip-coating with modified guanidine-based particle aqueous dispersion,” Cellulose, vol. 24, no. 9, pp. 3901–3910, Sep. 2017, doi: 10.1007/s10570-017-1386-7. [CrossRef] [Google Scholar]
- N. P. Guerra, C. L. Macias, A. T. Agrasar, and L. P. Castro, “Development of a bioactive packaging cellophane using NisaplinR as biopreservative agent,” Lett. Appl. Microbiol., vol. 40, no. 2, pp. 106–110, Feb. 2005, doi: 10.1111/j.1472-765X.2004.01649.x. [CrossRef] [PubMed] [Google Scholar]
- Guo et al., “Transparent Cellulose/Technical Lignin Composite Films for Advanced Packaging,” Polymers (Basel)., vol. 11, no. 9, p. 1455, Sep. 2019, doi: 10.3390/polym11091455. [CrossRef] [Google Scholar]
- S. Nasibi et al., “A review of Polyvinyl alcohol / Carboxiy methyl cellulose (PVA/CMC) composites for various applications,” J. Compos. Compd., vol. 2, no. 3, pp. 68–75, May 2020, doi: 10.29252/jcc.2.2.2. [Google Scholar]
- J. Yan et al., “The effect of the layer-by-layer (LBL) edible coating on strawberry quality and metabolites during storage,” Postharvest Biol. Technol., vol. 147, pp. 29–38, Jan. 2019, doi: 10.1016/j.postharvbio.2018.09.002. [CrossRef] [Google Scholar]
- D. M. Gouvêa, R. C. S. Mendonça, M. L. Soto, and R. S. Cruz, “Acetate cellulose film with bacteriophages for potential antimicrobial use in food packaging,” LWT - Food Sci. Technol., vol. 63, no. 1, pp. 85–91, Sep. 2015, doi: 10.1016/j.lwt.2015.03.014. [CrossRef] [Google Scholar]
- X. Wei et al., “Effects of temperature on cellulose hydrogen bonds during dissolution in ionic liquid,” Carbohydr. Polym., vol. 201, pp. 387–391, Dec. 2018, doi: 10.1016/j.carbpol.2018.08.031. [CrossRef] [Google Scholar]
- N. M. L. Hansen and D. Plackett, “Sustainable Films and Coatings from Hemicelluloses: A Review,” Biomacromolecules, vol. 9, no. 6, pp. 1493–1505, Jun. 2008, doi: 10.1021/bm800053z. [CrossRef] [PubMed] [Google Scholar]
- J. P. de Oliveira, G. P. Bruni, M. J. Fabra, E. da Rosa Zavareze, A. López-Rubio, and M. Martínez-Sanz, “Development of food packaging bioactive aerogels through the valorization of Gelidium sesquipedale seaweed,” Food Hydrocoll., vol. 89, pp. 337–350, Apr. 2019, doi: 10.1016/j.foodhyd.2018.10.047. [CrossRef] [Google Scholar]
- K. S. Mikkonen, C. Laine, I. Kontro, R. A. Talja, R. Serimaa, and M. Tenkanen, “Combination of internal and external plasticization of hydroxypropylated birch xylan tailors the properties of sustainable barrier films,” Eur. Polym. J., vol. 66, pp. 307–318, May 2015, doi: 10.1016/j.eurpolymj.2015.02.034. [CrossRef] [Google Scholar]
- K. S. Mikkonen and M. Tenkanen, “Sustainable food-packaging materials based on future biorefinery products: Xylans and mannans,” Trends Food Sci. Technol., vol. 28, no. 2, pp. 90–102, Dec. 2012, doi: 10.1016/j.tifs.2012.06.012. [CrossRef] [Google Scholar]
- F. R. S. Mendes et al., “Preparation and evaluation of hemicellulose films and their blends,” Food Hydrocoll., vol. 70, pp. 181–190, Sep. 2017, doi: 10.1016/j.foodhyd.2017.03.037. [CrossRef] [Google Scholar]
- G.-G. Chen, X.-M. Qi, Y. Guan, F. Peng, C.-L. Yao, and R.-C. Sun, “High Strength Hemicellulose-Based Nanocomposite Film for Food Packaging Applications,” ACS Sustain. Chem. Eng., vol. 4, no. 4, pp. 1985–1993, Apr. 2016, doi: 10.1021/acssuschemeng.5b01252. [CrossRef] [Google Scholar]
- L. R. Mugwagwa and A. F. A. Chimphango, “Enhancing the functional properties of acetylated hemicellulose films for active food packaging using acetylated nanocellulose reinforcement and polycaprolactone coating,” Food Packag. Shelf Life, vol. 24, p. 100481, Jun. 2020, doi: 10.1016/j.fpsl.2020.100481. [CrossRef] [Google Scholar]
- M. S. Abdel Aziz and H. E. Salama, “Developing multifunctional edible coatings based on alginate for active food packaging,” Int. J. Biol. Macromol., vol. 190, pp. 837–844, Nov. 2021, doi: 10.1016/j.ijbiomac.2021.09.031. [CrossRef] [Google Scholar]
- Sarengaowa, W. Hu, A. Jiang, Z. Xiu, and K. Feng, “Effect of thyme oil–alginate‐ based coating on quality and microbial safety of fresh‐cut apples,” J. Sci. Food Agric., vol. 98, no. 6, pp. 2302–2311, Apr. 2018, doi: 10.1002/jsfa.8720. [CrossRef] [PubMed] [Google Scholar]
- C. Wang, Y. Lu, Z. Li, X. An, Z. Gao, and S. Tian, “Preparation and Performance Characterization of a Composite Film Based on Corn Starch, κ-Carrageenan, and Ethanol Extract of Onion Skin,” Polymers (Basel)., vol. 14, no. 15, p. 2986, Jul. 2022, doi: 10.3390/polym14152986. [CrossRef] [Google Scholar]
- A. F. Rivera Leiva, J. Hernández-Fernández, and R. Ortega Toro, “Active Films Based on Starch and Wheat Gluten (Triticum vulgare) for Shelf-Life Extension of Carrots,” Polymers (Basel)., vol. 14, no. 23, p. 5077, Nov. 2022, doi: 10.3390/polym14235077. [CrossRef] [Google Scholar]
- P. Ezati, J.-W. Rhim, R. Molaei, R. Priyadarshi, and S. Han, “Cellulose nanofiber-based coating film integrated with nitrogen-functionalized carbon dots for active packaging applications of fresh fruit,” Postharvest Biol. Technol., vol. 186, p. 111845, Apr. 2022, doi: 10.1016/j.postharvbio.2022.111845. [CrossRef] [Google Scholar]
- A. Dirpan, M. Djalal, and I. Kamaruddin, “Application of an Intelligent Sensor and Active Packaging System Based on the Bacterial Cellulose of Acetobacter xylinum to Meat Products,” Sensors, vol. 22, no. 2, p. 544, Jan. 2022, doi: 10.3390/s22020544. [CrossRef] [PubMed] [Google Scholar]
- L. R. Mugwagwa and A. F. A. Chimphango, “Physicochemical properties and potential application of hemicellulose/pectin/nanocellulose biocomposites as active packaging for fatty foods,” Food Packag. Shelf Life, vol. 31, p. 100795, Mar. 2022, doi: 10.1016/j.fpsl.2021.100795. [CrossRef] [Google Scholar]
- J. Shi et al., “Antimicrobial food packaging composite films prepared from hemicellulose/polyvinyl alcohol/potassium cinnamate blends,” Int. J. Biol. Macromol., vol. 222, pp. 395–402, Dec. 2022, doi: 10.1016/j.ijbiomac.2022.09.139. [CrossRef] [Google Scholar]
- A. Bermúdez-Oria, G. Rodríguez-Gutiérrez, F. Rubio-Senent, Á. Fernández-Prior, and J. Fernández-Bolaños, “Effect of edible pectin-fish gelatin films containing the olive antioxidants hydroxytyrosol and 3,4-dihydroxyphenylglycol on beef meat during refrigerated storage,” Meat Sci., vol. 148, pp. 213–218, Feb. 2019, doi: 10.1016/j.meatsci.2018.07.003. [CrossRef] [Google Scholar]
- X. Fu et al., “Development of a chitosan/pectin-based multi-active food packaging with both UV and microbial defense functions for effectively preserving of strawberry,” Int. J. Biol. Macromol., vol. 254, p. 127968, Jan. 2024, doi: 10.1016/j.ijbiomac.2023.127968. [CrossRef] [Google Scholar]
- E. Kaya, L. N. Kahyaoglu, and G. Sumnu, “Development of curcumin incorporated composite films based on chitin and glucan complexes extracted from Agaricus bisporus for active packaging of chicken breast meat,” Int. J. Biol. Macromol., vol. 221, pp. 536–546, Nov. 2022, doi: 10.1016/j.ijbiomac.2022.09.025. [CrossRef] [Google Scholar]
- C. Xie et al., “Development and characterization of active packaging based on chitosan/chitin nanofibers incorporated with scallion flower extract and its preservation in fresh-cut bananas,” Int. J. Biol. Macromol., vol. 242, p. 125045, Jul. 2023, doi: 10.1016/j.ijbiomac.2023.125045. [CrossRef] [Google Scholar]
- D. Elieh-Ali-Komi and M. R. Hamblin, “Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials.,” Int. J. Adv. Res., vol. 4, no. 3, pp. 411–427, Mar. 2016, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/27819009. [Google Scholar]
- G. Guan et al., “Biological Effects and Applications of Chitosan and Chito-Oligosaccharides,” Front. Physiol., vol. 10, May 2019, doi: 10.3389/fphys.2019.00516. [Google Scholar]
- H. Wang, J. Qian, and F. Ding, “Emerging Chitosan-Based Films for Food Packaging Applications,” J. Agric. Food Chem., vol. 66, no. 2, pp. 395–413, Jan. 2018, doi: 10.1021/acs.jafc.7b04528. [CrossRef] [PubMed] [Google Scholar]
- S. Kumar, A. Mukherjee, and J. Dutta, “Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives,” Trends Food Sci. Technol., vol. 97, pp. 196–209, Mar. 2020, doi: 10.1016/j.tifs.2020.01.002. [CrossRef] [Google Scholar]
- P. Nechita and M. Roman (Iana-Roman), “Review on Polysaccharides Used in Coatings for Food Packaging Papers,” Coatings, vol. 10, no. 6, p. 566, Jun. 2020, doi: 10.3390/coatings10060566. [CrossRef] [Google Scholar]
- X. Zhang, S. Lu, and X. Chen, “A visual pH sensing film using natural dyes from Bauhinia blakeana Dunn,” Sensors Actuators B Chem., vol. 198, pp. 268–273, Jul. 2014, doi: 10.1016/j.snb.2014.02.094. [CrossRef] [Google Scholar]
- M.-M. Sadat Ebrahimi, Y. Voss, and H. Schönherr, “Rapid Detection of Escherichia coli via Enzymatically Triggered Reactions in Self-Reporting Chitosan Hydrogels,” ACS Appl. Mater. Interfaces, vol. 7, no. 36, pp. 20190–20199, Sep. 2015, doi: 10.1021/acsami.5b05746. [CrossRef] [PubMed] [Google Scholar]
- F. R. B. Marenda et al., “Advances in Studies Using Vegetable Wastes to Obtain Pectic Substances: A Review,” J. Polym. Environ., vol. 27, no. 3, pp. 549–560, Mar. 2019, doi: 10.1007/s10924-018-1355-8. [CrossRef] [Google Scholar]
- V. A. Cataldo, G. Cavallaro, G. Lazzara, S. Milioto, and F. Parisi, “Coffee grounds as filler for pectin: Green composites with competitive performances dependent on the UV irradiation,” Carbohydr. Polym., vol. 170, pp. 198–205, Aug. 2017, doi: 10.1016/j.carbpol.2017.04.092. [CrossRef] [Google Scholar]
- R. K. S. Khalil, M. R. Sharaby, and D. S. Abdelrahim, “Novel active edible food packaging films based entirely on citrus peel wastes,” Food Hydrocoll., vol. 134, p. 107961, Jan. 2023, doi: 10.1016/j.foodhyd.2022.107961. [CrossRef] [Google Scholar]
- M. R. Sharaby, E. A. Soliman, A. B. Abdel-Rahman, A. Osman, and R. Khalil, “Novel pectin-based nanocomposite film for active food packaging applications,” Sci. Rep., vol. 12, no. 1, p. 20673, Nov. 2022, doi: 10.1038/s41598-022-25192-4. [CrossRef] [Google Scholar]
- Sucheta, K. Chaturvedi, N. Sharma, and S. K. Yadav, “Composite edible coatings from commercial pectin, corn flour and beetroot powder minimize post-harvest decay, reduces ripening and improves sensory liking of tomatoes,” Int. J. Biol. Macromol., vol. 133, pp. 284–293, Jul. 2019, doi: 10.1016/j.ijbiomac.2019.04.132. [CrossRef] [Google Scholar]
- C. Mellinas, M. Ramos, A. Jiménez, and M. C. Garrigós, “Recent Trends in the Use of Pectin from Agro-Waste Residues as a Natural-Based Biopolymer for Food Packaging Applications,” Materials (Basel)., vol. 13, no. 3, p. 673, Feb. 2020, doi: 10.3390/ma13030673. [CrossRef] [Google Scholar]
- T. Nisar, Z.-C. Wang, X. Yang, Y. Tian, M. Iqbal, and Y. Guo, “Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties,” Int. J. Biol. Macromol., vol. 106, pp. 670–680, Jan. 2018, doi: 10.1016/j.ijbiomac.2017.08.068. [CrossRef] [Google Scholar]
- H. Almasi, S. Azizi, and S. Amjadi, “Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil,” Food Hydrocoll., vol. 99, p. 105338, Feb. 2020, doi: 10.1016/j.foodhyd.2019.105338. [CrossRef] [Google Scholar]
- R. Akhter, F. A. Masoodi, T. A. Wani, and S. A. Rather, “Functional characterization of biopolymer based composite film: Incorporation of natural essential oils and antimicrobial agents,” Int. J. Biol. Macromol., vol. 137, pp. 1245–1255, Sep. 2019, doi: 10.1016/j.ijbiomac.2019.06.214. [CrossRef] [Google Scholar]
- I. Dudnyk, E.-R. Janeček, J. Vaucher-Joset, and F. Stellacci, “Edible sensors for meat and seafood freshness,” Sensors Actuators B Chem., vol. 259, pp. 1108–1112, Apr. 2018, doi: 10.1016/j.snb.2017.12.057. [CrossRef] [Google Scholar]
- Y. Lei et al., “Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol,” Food Hydrocoll., vol. 94, pp. 128–135, Sep. 2019, doi: 10.1016/j.foodhyd.2019.03.011. [CrossRef] [Google Scholar]
- M. Kumar et al., “Emerging trends in pectin extraction and its anti-microbial functionalization using natural bioactives for application in food packaging,” Trends Food Sci. Technol., vol. 105, pp. 223–237, Nov. 2020, doi: 10.1016/j.tifs.2020.09.009. [CrossRef] [Google Scholar]
- J. F. Mendes et al., “Correlating emulsion characteristics with the properties of active starch films loaded with lemongrass essential oil,” Food Hydrocoll., vol. 100, p. 105428, Mar. 2020, doi: 10.1016/j.foodhyd.2019.105428. [CrossRef] [Google Scholar]
- L. García-Guzmán, G. Cabrera-Barjas, C. G. Soria-Hernández, J. Castaño, A. Y. Guadarrama-Lezama, and S. Rodríguez Llamazares, “Progress in Starch-Based Materials for Food Packaging Applications,” Polysaccharides, vol. 3, no. 1, pp. 136–177, Jan. 2022, doi: 10.3390/polysaccharides3010007. [CrossRef] [Google Scholar]
- O. Martínez, J. Salmerón, L. Epelde, M. S. Vicente, and C. de Vega, “Quality enhancement of smoked sea bass (Dicentrarchus labrax) fillets by adding resveratrol and coating with chitosan and alginate edible films,” Food Control, vol. 85, pp. 168–176, Mar. 2018, doi: 10.1016/j.foodcont.2017.10.003. [CrossRef] [Google Scholar]
- R. K. ROCKOWER, J. C. DENG, W. S. OTWELL, and J. A. CORNELL, “Effect of Soy Flour, Soy Protein Concentrate and Sodium Alginate on the Textural Attributes of Minced Fish Patties,” J. Food Sci., vol. 48, no. 4, pp. 1048–1052, Jul. 1983, doi: 10.1111/j.1365-2621.1983.tb09158.x. [CrossRef] [Google Scholar]
- T. Senturk Parreidt, K. Müller, and M. Schmid, “Alginate-Based Edible Films and Coatings for Food Packaging Applications,” Foods, vol. 7, no. 10, p. 170, Oct. 2018, doi: 10.3390/foods7100170. [CrossRef] [PubMed] [Google Scholar]
- H. E. Salama, M. S. Abdel Aziz, and M. Alsehli, “Carboxymethyl cellulose/sodium alginate/chitosan biguanidine hydrochloride ternary system for edible coatings,” Int. J. Biol. Macromol., vol. 139, pp. 614–620, Oct. 2019, doi: 10.1016/j.ijbiomac.2019.08.008. [CrossRef] [Google Scholar]
- M. S. Abdel Aziz, H. E. Salama, and M. W. Sabaa, “Biobased alginate/castor oil edible films for active food packaging,” LWT, vol. 96, pp. 455–460, Oct. 2018, doi: 10.1016/j.lwt.2018.05.049. [CrossRef] [Google Scholar]
- H. M. Díaz-Mula, M. Serrano, and D. Valero, “Alginate Coatings Preserve Fruit Quality and Bioactive Compounds during Storage of Sweet Cherry Fruit,” Food Bioprocess Technol., vol. 5, no. 8, pp. 2990–2997, Nov. 2012, doi: 10.1007/s11947-011-0599-2. [CrossRef] [Google Scholar]
- M. S. Abdel Aziz, H. E. Salama, and G. R. Saad, “Diglycidyl ether of bisphenol A/chitosan‐ graft ‐polyaniline composites with electromagnetic interference shielding properties: Synthesis, characterization, and curing kinetics,” Polym. Eng. Sci., vol. 59, no. 2, pp. 372–381, Feb. 2019, doi: 10.1002/pen.24933. [CrossRef] [Google Scholar]
- H. E. Salama, M. S. Abdel Aziz, and M. W. Sabaa, “Novel biodegradable and antibacterial edible films based on alginate and chitosan biguanidine hydrochloride,” Int. J. Biol. Macromol., vol. 116, pp. 443–450, Sep. 2018, doi: 10.1016/j.ijbiomac.2018.04.183. [CrossRef] [Google Scholar]
- H. E. Salama and M. S. Abdel Aziz, “Optimized alginate and Aloe vera gel edible coating reinforced with nTiO2 for the shelf-life extension of tomatoes,” Int. J. Biol. Macromol., vol. 165, pp. 2693–2701, Dec. 2020, doi: 10.1016/j.ijbiomac.2020.10.108. [CrossRef] [Google Scholar]
- H. M. C. Azeredo, K. W. E. Miranda, M. F. Rosa, D. M. Nascimento, and M. R. de Moura, “Edible films from alginate-acerola puree reinforced with cellulose whiskers,” LWT - Food Sci. Technol., vol. 46, no. 1, pp. 294–297, Apr. 2012, doi: 10.1016/j.lwt.2011.09.016. [CrossRef] [Google Scholar]
- C. Costa, A. Conte, G. G. Buonocore, M. Lavorgna, and M. A. Del Nobile, “Calcium-alginate coating loaded with silver-montmorillonite nanoparticles to prolong the shelf-life of fresh-cut carrots,” Food Res. Int., vol. 48, no. 1, pp. 164–169, Aug. 2012, doi: 10.1016/j.foodres.2012.03.001. [CrossRef] [Google Scholar]
- M. J. Fabra, I. Falcó, W. Randazzo, G. Sánchez, and A. López-Rubio, “Antiviral and antioxidant properties of active alginate edible films containing phenolic extracts,” Food Hydrocoll., vol. 81, pp. 96–103, Aug. 2018, doi: 10.1016/j.foodhyd.2018.02.026. [CrossRef] [Google Scholar]
- X. Li, X. Du, Y. Liu, L. Tong, Q. Wang, and J. Li, “Rhubarb extract incorporated into an alginate-based edible coating for peach preservation,” Sci. Hortic. (Amsterdam)., vol. 257, p. 108685, Nov. 2019, doi: 10.1016/j.scienta.2019.108685. [CrossRef] [Google Scholar]
- S. Kim, S.-K. Baek, and K. Bin Song, “Physical and antioxidant properties of alginate films prepared from Sargassum fulvellum with black chokeberry extract,” Food Packag. Shelf Life, vol. 18, pp. 157–163, Dec. 2018, doi: 10.1016/j.fpsl.2018.11.008. [CrossRef] [Google Scholar]
- A. Nešić, G. Cabrera-Barjas, S. Dimitrijević-Branković, S. Davidović, N. Radovanović, and C. Delattre, “Prospect of Polysaccharide-Based Materials as Advanced Food Packaging,” Molecules, vol. 25, no. 1, p. 135, Dec. 2019, doi: 10.3390/molecules25010135. [CrossRef] [PubMed] [Google Scholar]
- M. Qian et al., “A review of active packaging in bakery products: Applications and future trends,” Trends Food Sci. Technol., vol. 114, pp. 459–471, Aug. 2021, doi: 10.1016/j.tifs.2021.06.009. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.