Open Access
Issue |
BIO Web Conf.
Volume 150, 2025
2024 6th International Conference on Biotechnology and Agriculture Engineering (ICBAE 2024)
|
|
---|---|---|
Article Number | 02004 | |
Number of page(s) | 8 | |
Section | Plant-Derived Antibacterial Agents and Plant Resources for Energy | |
DOI | https://doi.org/10.1051/bioconf/202515002004 | |
Published online | 15 January 2025 |
- Singh, P., Singh, R.K., Gokul, P.V., Hasan, S.-U., and Sawarkar, A.N., Thermal degradation and pyrolysis kinetics of two Indian rice husk varieties using thermogravimetric analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects: p. 1–12. [Google Scholar]
- Abaide, E.R., Tres, M.V., Zabot, G.L., and Mazutti, M.A., Reasons for processing of rice coproducts: Reality and expectations. Biomass and Bioenergy, 2019. 120: p. 240256. [CrossRef] [Google Scholar]
- Pambudi, S., Saechua, W., and Jongyingcharoen, J.S., A thermogravimetric assessment of eco-friendly biochar from oxidative torrefaction of spent coffee grounds: Combustion behavior, kinetic parameters, and potential emissions. Environmental Technology & Innovation, 2024. 33: p. 103472. [CrossRef] [Google Scholar]
- Yadav, D., Saha, S., Sahu, G., Chavan, P.D., Datta, S., Chauhan, V., and Kumari, N., A comparative review on thermal behavior of feedstocks during gasification via thermogravimetric analyzer. Journal of Thermal Analysis and Calorimetry, 2023. 148(2): p. 329–354. [CrossRef] [Google Scholar]
- Ge, H., Zheng, J., and Xu, H., Advances in machine learning for high value-added applications of lignocellulosic biomass. Bioresource Technology, 2023. 369: p. 128481. [CrossRef] [PubMed] [Google Scholar]
- Hai, A., Bharath, G., Daud, M., Rambabu, K., Ali, I., Hasan, S.W., Show, P., and Banat, F., Valorization of groundnut shell via pyrolysis: Product distribution, thermodynamic analysis, kinetic estimation, and artificial neural network modeling. Chemosphere, 2021. 283: p. 131162. [CrossRef] [PubMed] [Google Scholar]
- Zhong, Y., Liu, F., Huang, G., Zhang, J., Li, C., and Ding, Y., Thermogravimetric experiments based prediction of biomass pyrolysis behavior: A comparison of typical machine learning regression models in Scikit-learn. Marine Pollution Bulletin, 2024. 202: p. 116361. [CrossRef] [PubMed] [Google Scholar]
- El-Sayed, S.A. and Mostafa, M.E., Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG). Energy Conversion and Management, 2014. 85: p. 165–172. [CrossRef] [Google Scholar]
- Wu, H.-C., Ku, Y., Tsai, H.-H., Kuo, Y.-L., and Tseng, Y.-H., Rice husk as solid fuel for chemical looping combustion in an annular dual-tube moving bed reactor. Chemical Engineering Journal, 2015. 280: p. 82–89. [CrossRef] [Google Scholar]
- Hossain, M.S., Islam, M.R., Rahman, M.S., Kader, M.A., and Haniu, H., Biofuel from Co-pyrolysis of Solid Tire Waste and Rice Husk. Energy Procedia, 2017. 110: p. 453458. [Google Scholar]
- Pambudi, S., Jongyingcharoen, J.S., and Saechua, W., Thermochemical treatment of spent coffee grounds via torrefaction: A statistical evidence of biochar properties similarity between inert and oxidative conditions. Results in Engineering, 2024: p. 102012. [CrossRef] [Google Scholar]
- Mian, I., Li, X., Dacres, O.D., Wang, J., Wei, B., Jian, Y., Zhong, M., Liu, J., Ma, F., and Rahman, N., Combustion kinetics and mechanism of biomass pellet. Energy, 2020. 205: p. 117909. [CrossRef] [Google Scholar]
- Riaz, S., Oluwoye, I., and Al-Abdeli, Y.M., Oxidative torrefaction of densified woody biomass: Performance, combustion kinetics and thermodynamics. Renewable Energy, 2022. 199: p. 908–918. [CrossRef] [Google Scholar]
- El-Sayed, S.A., Khass, T.M., and Mostafa, M.E., Thermal degradation behaviour and chemical kinetic characteristics of biomass pyrolysis using TG/DTG/DTA techniques. Biomass Conversion and Biorefinery, 2023. [Google Scholar]
- Gajera, B., Tyagi, U., Sarma, A.K., and Jha, M.K., Impact of torrefaction on thermal behavior of wheat straw and groundnut stalk biomass: Kinetic and thermodynamic study. Fuel Communications, 2022. 12: p. 100073. [CrossRef] [Google Scholar]
- Mayol, A.P., Maningo, J.M.Z., Chua-Unsu, A.G.A.Y., Felix, C.B., Rico, P.I., Chua, G.S., Manalili, E.V., Fernandez, D.D., Cuello, J.L., Bandala, A.A., Ubando, A.T., Madrazo, C.F., Dadios, E., and Culaba, A.B. Application of Artificial Neural Networks in prediction of pyrolysis behavior for algal mat (LABLAB) biomass. in 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM). 2018. [Google Scholar]
- Ashraf, M., Aslam, Z., Ramzan, N., Aslam, U., Durrani, A.K., Khan, R.U., and Ayaz, S., Pyrolysis of cattle dung: model fitting and artificial neural network validation approach. Biomass Conversion and Biorefinery, 2023. 13(12): p. 10451–10462. [CrossRef] [Google Scholar]
- Costa, V.G. and Pedreira, C.E., Recent advances in decision trees: an updated survey. Artificial Intelligence Review, 2023. 56(5): p. 4765–4800. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.