Open Access
Issue |
BIO Web Conf.
Volume 151, 2025
International Conference “Mountains: Biodiversity, Landscapes and Cultures” (MBLC-2024)
|
|
---|---|---|
Article Number | 02002 | |
Number of page(s) | 7 | |
Section | Climate Change and Environment | |
DOI | https://doi.org/10.1051/bioconf/202515102002 | |
Published online | 21 January 2025 |
- Garajeh, M. K., & Feizizadeh, B. A comparative approach of data-driven split-window algorithms and MODIS products for land surface temperature retrieval. Applied Geomatics, 13, 715-733. (2021). [CrossRef] [Google Scholar]
- Abou Samra RM. Dynamics of human-made lakes and their impact on land surface temperature in the Toshka Depression, Western Desert, Egypt. Environ. Sci. Poll. Res. 29, 20892-20905. (2022). [CrossRef] [PubMed] [Google Scholar]
- Gabriele M, Brumana R, Previtali M, Cazzani A. A combined GIS and remote sensing approach to monitor climate change-related land degradation to support landscape preservation and planning tools: The Basilica case study. Appl. Geomate. 15, 497-532. (2023). [Google Scholar]
- Sima, S., Rosenberg, D. E., Wurtsbaugh, W. A., Null, S. E., & Kettenring, K. M. Managing Lake Urmia, Iran for diverse restoration objectives: Moving beyond a uniform target lake level. Journal of Hydrology: Regional Studies, 35, 100812. (2021). [CrossRef] [Google Scholar]
- Harati, H., Kiadaliri, M., Tavana, A., Rahnavard, A., & Amirnezhad, R. Urmia Lake dust storms occurrences: investigating the relationships with changes in water zone and land cover in the eastern part using remote sensing and GIS. Environmental Monitoring and Assessment,193, 1-16. (2021). [CrossRef] [Google Scholar]
- Karimzadeh S, Matsuoka M, Ogushi F. Spatio-temporal deformation patterns of the Urmia Lake causeway as characterized by multi-sensor InSAR analysis. Sci. representative, 8, 5357. (2018). [Google Scholar]
- AghaKouchak, A., Norouzi, H., Madani, K., Mirchi, A., Azarderakhsh, M., Nazemi, A., Hasanzadeh, E. Aral Sea syndrome desiccates Lake Urmia: call for action. Journal of Great Lakes Research, 41(1), 307-311. (2015). [CrossRef] [Google Scholar]
- Thorne, P. W., Lanzante, J. R., Peterson, T. C., Seidel, D. J., & Shine, K. P. Tropospheric temperature trends: History of an ongoing controversy. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 66-88. (2011). [CrossRef] [Google Scholar]
- Mears, C. A., & Wentz, F. J. Construction of the Remote Sensing Systems V3. 2 atmospheric temperature records from the MSU and AMSU microwave sounders. Journal of Atmospheric and Oceanic Technology, 26(6), 1040-1056. (2009). [CrossRef] [Google Scholar]
- Xu, J., & Powell Jr, A. M. Uncertainty of the stratospheric/tropospheric temperature trends in 1979–2008: multiple satellite MSU, radiosonde, and reanalysis datasets. Atmospheric Chemistry and Physics, 11(20), 10727-10732. (2011). [CrossRef] [Google Scholar]
- Christy, J.R., Spencer, R.W. & Norris, W.B. The role of remote sensing in monitoring global tropospheric temperatures. Int. J. Remote Sensing. 671-685 (2011). [Google Scholar]
- Fu, Q., Manabe, S., & Johanson, C. M. On the tropical upper tropospheric warming: Models versus observations. Geophys. Res. Lett, 38, L15704. (2011). [Google Scholar]
- Frei, A. A new generation of satellite snow observations for large scale earth system studies. Geography Compass, 3(3), 879-902. (2009). [CrossRef] [Google Scholar]
- Brown, R. D., & Robinson, D. A. Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. The Cryosphere, 5(1), 219-229. (2011). [CrossRef] [Google Scholar]
- Bulygina, O., Groisman, P.Y., Razuvaev, V. & Korshunova, N. Changes in snow cover characteristics in northern Eurasia since 1966. Environ. Res. Lett. 6, 045204 (2011). [CrossRef] [Google Scholar]
- Parkinson, C. & Cavalieri, D. Variability and trends in Antarctic sea ice. Cryosphere discussion. 6, 931-956 (2012). [Google Scholar]
- Liu, J. and Curry, J.A. Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice. Proc. Natl Acad. Sci. USA 107, 14987 (2010). [CrossRef] [PubMed] [Google Scholar]
- Cavalieri, D. & Parkinson, C. Arctic sea ice variability and trends, 1979-2010 Cryosphere. 6, 881-889 (2012). [Google Scholar]
- Kattsov, V. M., Ryabinin, V. E., Overland, J. E., Serreze, M. C., Visbeck, M., Walsh, J. E., Zhang, X. Arctic sea-ice change: a grand challenge of climate science. Journal of Glaciology,56(200), 1115-1121. (2010). [CrossRef] [Google Scholar]
- Maslanik, J., Stroeve, J., Fowler, C., and Emery, W. Distribution and age trends of Arctic sea ice through spring 2011. Geophys. Res. Lett. 38, L13502 (2011). [Google Scholar]
- Horwath, M., Legresy, B., Rémy, F., Blarel, F., & Lemoine, J. M. Consistent patterns of Antarctic ice sheet interannual variations from ENVISAT radar altimetry and GRACE satellite gravimetry. Geophysical Journal International, 189(2), 863-876. (2012). [CrossRef] [Google Scholar]
- Shepherd, A., Ivins, E. R., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs, K. H., Zwally, H. J. A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 1183-1189. (2012). [CrossRef] [PubMed] [Google Scholar]
- Rignot, E., Casassa, G., Gogineni, P., Krabill, W., Rivera, A. U., & Thomas, R. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophysical research letters, 31(18). (2004). [Google Scholar]
- Joughin, I., Alley, R. B., & Holland, D. M. Ice-sheet response to oceanic forcing. science, 338(6111), 1172-1176. (2012). [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.