Open Access
Issue |
BIO Web Conf.
Volume 152, 2025
International Conference on Health and Biological Science (ICHBS 2024)
|
|
---|---|---|
Article Number | 01020 | |
Number of page(s) | 12 | |
Section | Dense Matter | |
DOI | https://doi.org/10.1051/bioconf/202515201020 | |
Published online | 20 January 2025 |
- R.P. Fadhillah, R. Rahma, A. Sepharni, R. Mufidah, B.N. Sari, A. Pangestu, Klasifikasi Penyakit Diabetes Mellitus Berdasarkan Faktor-Faktor Penyebab Diabetes Menggunakan Algoritma C4.5, JIPI (J. Ilmiah Penelit. dan Pembelajaran Inform.) 7, 1265–1270 (2022). [Google Scholar]
- N.V.V. Pasaribu, A. Simangunsong, Expert System for Diagnosing Diabetes Mellitus Disease using Forward Chaining Method, Login: J. Teknol. Komput. 14, 346–351 (2020). [Google Scholar]
- F.A. Khaleel, A.M. Al-Bakry, Diagnosis of Diabetes Using Machine Learning Algorithms, Mater. Today Proc. (2021). [Google Scholar]
- M. Alzyoud, R. Alazaidah, M. Aljaidi, et al., Diagnosing Diabetes Mellitus using Machine Learning Techniques, Int. J. Data Netw. Sci. 8, 179–188 (2024). [CrossRef] [Google Scholar]
- CDC, Children and Diabetes, https://www.cdc.gov/diabetes/index.html (2023) [accessed: 19-May-2024]. [Google Scholar]
- T.K. Oser, S.M. Oser, E.L. McGinley, H.L. Stuckey, A Novel Approach to Identifying Barriers and Facilitators in Raising a Child with Type 1 Diabetes: Qualitative Analysis of Caregiver Blogs, JMIR Diabetes 2, e27 (2017). [CrossRef] [PubMed] [Google Scholar]
- T.S. Smith-Jackson, M.V. Brown, M. Flint, M. Larsen, A Mixed Method Approach to Understanding The Factors Surrounding Delayed Diagnosis of Type One Diabetes, J. Diabetes Complicat. 32, 1051–1055 (2018). [CrossRef] [Google Scholar]
- N.R. Muntiari, K. Nisa, A.A.S. Sandi, et al., Comparison of Random Forest Algorithm, Support Vector Machine, and K-Nearest Neighbor for Diabetes Disease Classification, AIP Conf. Proc. (2023). [Google Scholar]
- R. Primartha, Algoritma Machine Learning (Informatika, Bandung, 2021). [Google Scholar]
- R.P. Ambilwade, R.R. Manza, B.P. Gaikwad, Medical Expert Systems for Diabetes Diagnosis: A Survey, Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4, 2277 (2014). [Google Scholar]
- S. Borzouei, H. Mahjub, N. Sajadi, M. Farhadian, Diagnosing Thyroid Disorders: Comparison of Logistic Regression and Neural Network Models, J. Fam. Med. Prim. Care 9, 1476 (2020). [Google Scholar]
- M. Abdar, M. Zomorodi-Moghadam, R. Das, I.H. Ting, Performance Analysis of Classification Algorithms on Early Detection of Liver Disease, Expert Syst. Appl. 67, 239–251 (2017). [CrossRef] [Google Scholar]
- J. Singla, D. Grover, A. Bhandari, Medical Expert Systems for Diagnosis of Various Diseases, Int. J. Comput. Appl. 93, 36–43 (2014). [Google Scholar]
- Suyanto, Artificial Intelligence: Searching, Reasoning, Planning, dan Learning (Informatika, Bandung, 2014). [Google Scholar]
- N. Rahimova Ali, V. Abdullayev Hacimahmud, Methodology of expert system building, Technium: Rom. J. Appl. Sci. Technol. 2, 140–146 (2020). [Google Scholar]
- M. Ravuri, A. Kannan, G.J. Tso, X. Amatriain, Learning from The Experts: From Expert Systems to Machine-Learned Diagnosis Models, Proc. Mach. Learn. Res. 85, 227–243 (2018). [Google Scholar]
- J.A. Widians, N. Puspitasari, A. Febriansyah, Disease Diagnosis System Using Certainty Factor, 2019 Int. Conf. Electr. Electron. Inf. Eng. (ICEEIE), 303–308 (2019). [Google Scholar]
- J. Liebowitz, The Handbook of Applied Expert Systems (CRC Press, Boca Raton, Florida, 2019). [CrossRef] [Google Scholar]
- E.P. Gunawan, R. Wardoyo, An Expert System Using Certainty Factor for Determining Insomnia Acupoint, IJCCS (Indones. J. Comput. Cybern. Syst.) 12, 119 (2018). [CrossRef] [Google Scholar]
- M. Yumarlin, Implementasi Metode Certainty Factor dan Backward Chaining untuk Penentuan Tanaman Herbal sebagai Alternatif Pengobatan, Semin. Nas. Disemin. Has. Penelit. 2021 (deHAP 2021), 346–353 (2021). [Google Scholar]
- A. Lesmana, R.M. Simanjorang, Expert System to Diagnose Appendicitis with the Certainty Factor Method, Login: J. Teknol. Komput. 15, 14–18 (2021). [Google Scholar]
- A.S. Yanuar, E.G. Wahyuni, D.T. Wiyanti, Certainty Factor Method for Neurological Disease Diagnosis Based on Symptoms, ICCSET, 851–856 (2018). [Google Scholar]
- A. Gunawan, F. Islami, Implementing the Certainty Factor Method in a Dental Disease Expert System, J. Med. Inform. Technol. 2, 27–32 (2024). [CrossRef] [Google Scholar]
- M.I. Insani, A. Alamsyah, A.T. Putra, Implementation of Expert System for Diabetes Diseases using Naïve Bayes and Certainty Factor Methods, Sci. J. Inform. 5, 2407–7658 (2018). [Google Scholar]
- N.R. Muntiari, K.H. Hanif, Application of the Certainty Factor Method for Diagnosing Osteoarthritis Using the Python Programming Language, J. Adv. Health Inform. Res. 1, 21–27 (2023). [CrossRef] [Google Scholar]
- F.H. Ramadhanti, A. Eviyanti, Expert System for Diagnosing Diseases in Children Under Five Uses Certainty Factor Based Websites, Procedia Eng. Life Sci. 1 (2), (2021). [CrossRef] [Google Scholar]
- L. Safira, B. Irawan, C. Setiningsih, Implementation of the Certainty Factor Method for Early Detection of Cirrhosis Based on Android, J. Phys. Conf. Ser. 1201, 12053 (2019). [Google Scholar]
- S. Sumiati, H. Saragih, T.K.A. Rahman, A. Triayudi, Expert system for heart disease based on electrocardiogram data using certainty factor with multiple rules, IAES Int. J. Artif. Intell. 10, 43–50 (2021). [Google Scholar]
- E. Nurhayatmi, Z. Muttaqin, A. Sugiyarta, R.N. Hay’s, Expert System for Diagnosing Types of Diseases in Human Intestine Organs Using the Certainty Factor Method, J. Mach. Learn. Soft Comput. 1, 21–28 (2019). [CrossRef] [Google Scholar]
- R. Dwi, Metode Backward Chaining untuk Diagnosa Penyebab Stroke pada Pasien Penderita, EXPERT: J. Manaj. Sist. Inform. dan Teknol. 8 (2), (2018). [Google Scholar]
- J. Liebowitz, Expert systems: A Short Introduction, Eng. Fract. Mech. 50, 601–607 (1995). [CrossRef] [Google Scholar]
- M.K. El-Najdawi, A.C. Stylianou, Expert Support Systems: Integrating AI Technologies, Commun. ACM 36, 55–65 (1993). [CrossRef] [Google Scholar]
- Nature Editorial, AI Will Transform Science — Now Researchers Must Tame It, Nature 621, 658 (2023). [Google Scholar]
- E. Sujiati, S. Sulindawaty, Sistem Pakar untuk Mendiagnosa Penyakit Diabetes Menggunakan Metode Certainty Factor, J. Sist. Inform. Kaputama (JSIK) 4, (2020). [Google Scholar]
- S. Harmanto, Pengantar Kecerdasan Artifisial (Penerbit Gunadarma, Depok, 2022). [Google Scholar]
- R. Rendis, D. Suranti, E. Suryana, An Expert System to Diagnose Diseases Caused by Coxsackie Virus in Children, J. Komput. Inform. Teknol. (JKOMITEK) 1, 299–306 (2021). [Google Scholar]
- M. Dehghandar, G. Ahmadi, H.A. Monfared, Designing a Fuzzy Expert System for Diagnosis and Prediction of Metabolic Syndrome in Children and Adolescents, Health Manag. Inform. Sci. 8, 79–89 (2021). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.