Open Access
Issue |
BIO Web Conf.
Volume 152, 2025
International Conference on Health and Biological Science (ICHBS 2024)
|
|
---|---|---|
Article Number | 01034 | |
Number of page(s) | 12 | |
Section | Dense Matter | |
DOI | https://doi.org/10.1051/bioconf/202515201034 | |
Published online | 20 January 2025 |
- S. Quazi, R.P. Saha, M.K. Singh, Applications of artificial intelligence in healthcare. J. Exp. Biol. Agric. Sci. 10, 211–226 (2022). https://doi.org/10.18006/2022.10(1).211.226 [CrossRef] [Google Scholar]
- P. Papadimitroulas et al., Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization. Phys. Med. 83, 108–121 (2021). https://doi.org/10.1016/j.ejmp.2021.03.009 [CrossRef] [Google Scholar]
- M.A. Naveed, Transforming healthcare through artificial intelligence and machine learning. Pak. J. Health Sci. 4, 01 (2023). https://doi.org/10.54393/pjhs.v4i05.844 [Google Scholar]
- R. Zulfiqar et al., Artificial intelligence as a diagnostic tool in medicine and community dentistry: A systematic literature review. Chin. J. Otorhinolaryngol. Head Neck Surg. 54, 1253–1264 (2023). https://www.researchgate.net/publication/377019288 [Google Scholar]
- J. Iqbal et al., Reimagining healthcare: Unleashing the power of artificial intelligence in medicine. Cureus (to be published). https://doi.org/10.7759/cureus.44658 [Google Scholar]
- K.K. Yadav, A. Gaurav, Application and challenges of machine learning in healthcare. Int. J. Res. Appl. Sci. Eng. Technol. 11, 458–466 (2023). https://doi.org/10.22214/ijraset.2023.55678 [CrossRef] [Google Scholar]
- K. Ganapathy, Artificial intelligence and healthcare: Regulatory and legal concerns. Telehealth Med. Today 6, (2021). https://doi.org/10.30953/tmt.v6.252 [Google Scholar]
- H.S., L.C. Manikandan, A study on artificial intelligence technologies and its applications. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 6, 336–344 (2020). https://doi.org/10.32628/CSEIT206455 [Google Scholar]
- S.M. Mohammad, Artificial intelligence in information technology. SSRN Electron. J. (2020). https://doi.org/10.2139/ssrn.3625444 [Google Scholar]
- M. Barenkamp, J. Rebstadt, O. Thomas, Applications of AI in classical software engineering. AI Perspect. 2, 1 (2020). https://doi.org/10.1186/s42467-020-00005-4 [CrossRef] [Google Scholar]
- S. Bhardwaj, S. Kishore, D.K. Pandey, Artificial intelligence in biological sciences. Life 12, 1430 (2022). https://doi.org/10.3390/life12091430 [CrossRef] [PubMed] [Google Scholar]
- L. Chen, P. Chen, Z. Lin, Artificial intelligence in education: A review. IEEE Access 8, 75264–75278 (2020). https://doi.org/10.1109/ACCESS.2020.2988510 [CrossRef] [Google Scholar]
- R. Kusters et al., Interdisciplinary research in artificial intelligence: Challenges and opportunities. Front. Big Data 3, (2020). https://doi.org/10.3389/fdata.2020.577974 [CrossRef] [Google Scholar]
- N.I. Volkova, A.V. Volkov, Medical diagnosis and its nature. Med. Herald South Russia 14, 16–23 (2023). https://doi.org/10.21886/2219-8075-2023-14-3-16-23 [CrossRef] [Google Scholar]
- L. Alzubaidi et al., Robust application of new deep learning tools: An experimental study in medical imaging. Multimed. Tools Appl. 81, 13289–13317 (2022). https://doi.org/10.1007/s11042-021-10942-9 [CrossRef] [Google Scholar]
- D. Kiselev et al., Current trends in diagnostics of viral infections of unknown etiology. Viruses 12, 211 (2020). https://doi.org/10.3390/v12020211 [CrossRef] [PubMed] [Google Scholar]
- O. Oren, B.J. Gersh, D.L. Bhatt, Artificial intelligence in medical imaging: Switching from radiographic pathological data to clinically meaningful endpoints. Lancet Digit. Health 2, e486–e488 (2020). https://doi.org/10.1016/S2589-7500(20)30160-6 [CrossRef] [Google Scholar]
- G. Rong et al., Artificial intelligence in healthcare: Review and prediction case studies. Eng. 6, 291–301 (2020). https://doi.org/10.1016/j.eng.2019.08.015 [CrossRef] [Google Scholar]
- M. Law, J. Seah, G. Shih, Artificial intelligence and medical imaging: Applications, challenges and solutions. Med. J. Aust. 214, 450 (2021). https://doi.org/10.5694/mja2.51077 [CrossRef] [PubMed] [Google Scholar]
- C. Cestonaro et al., Defining medical liability when artificial intelligence is applied on diagnostic algorithms: A systematic review. Front. Med. (Lausanne) 10, (2023). https://doi.org/10.3389/fmed.2023.1305756 [Google Scholar]
- S. Gerke, T. Minssen, I.G. Cohen, Ethical and legal challenges of artificial intelligencedriven health care. SSRN Electron. J. (2020). https://doi.org/10.2139/ssrn.3570129 [Google Scholar]
- Y.A. Vasiliev et al., Methodology for testing and monitoring artificial intelligence-based software for medical diagnostics. Digit. Diagn. 4, 252–267 (2023). https://doi.org/10.17816/DD321971 [CrossRef] [Google Scholar]
- D.F. Steiner, P.-H.C. Chen, C.H. Mermel, Closing the translation gap: AI applications in digital pathology. Biochim. Biophys. Acta Rev. Cancer 1875, 188452 (2021). https://doi.org/10.1016/j.bbcan.2020.188452 [CrossRef] [Google Scholar]
- Khajuria et al., Artificial intelligence in medical imaging technology: A clinical update. Santosh Univ. J. Health Sci. 9, 20 (2023). https://doi.org/10.4103/sujhs.sujhs_6_23 [CrossRef] [Google Scholar]
- S. Choi, S. Kim, Artificial intelligence in the pathology of gastric cancer. J. Gastric Cancer 23, 410 (2023). https://doi.org/10.5230/jgc.2023.23.e25 [CrossRef] [PubMed] [Google Scholar]
- G.A. Saleh et al., Impact of imaging biomarkers and AI on breast cancer management: A brief review. Cancers (Basel) 15, 5216 (2023). https://doi.org/10.3390/cancers15215216 [CrossRef] [PubMed] [Google Scholar]
- Aleid et al., Artificial intelligence approach for early detection of brain tumors using MRI images. Appl. Sci. 13, 3808 (2023). https://doi.org/10.3390/app13063808 [CrossRef] [Google Scholar]
- E. Trivizakis et al., Artificial intelligence radiogenomics for advancing precision and effectiveness in oncologic care (review). Int. J. Oncol. 57, 43–53 (2020). https://doi.org/10.3892/ijo.2020.5063 [CrossRef] [PubMed] [Google Scholar]
- M. Goyal et al., Artificial intelligence-based image classification methods for diagnosis of skin cancer: Challenges and opportunities. Comput. Biol. Med. 127, 104065 (2020). https://doi.org/10.1016/j.compbiomed.2020.104065 [CrossRef] [Google Scholar]
- K.P. Smith et al., Applications of artificial intelligence in clinical microbiology diagnostic testing. Clin. Microbiol. Newsl. 42, 61–70 (2020). https://doi.org/10.1016/j.clinmicnews.2020.03.006 [CrossRef] [Google Scholar]
- Kiseleva, Comments on the EU White Paper on AI: A Regulatory Framework for HighRisk Healthcare AI Applications. SSRN Electron. J. (2020). https://doi.org/10.2139/ssrn.3627741 [Google Scholar]
- H.B. Harvey, V. Gowda, How the FDA regulates AI. Acad. Radiol. 27, 58–61 (2020). https://doi.org/10.1016/j.acra.2019.09.017 [CrossRef] [Google Scholar]
- U.J. Muehlematter, P. Daniore, K.N. Vokinger, Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015–20): A comparative analysis. Lancet Digit. Health 3, e195–e203 (2021). https://doi.org/10.1016/S2589-7500(20)30292-2 [CrossRef] [Google Scholar]
- S. Benjamens, P. Dhunnoo, B. Meskó, The state of artificial intelligence-based FDAapproved medical devices and algorithms: An online database. NPJ Digit. Med. 3, 118 (2020). https://doi.org/10.1038/s41746-020-00324-0 [CrossRef] [Google Scholar]
- K.N. Pawar, R.T. Gore, S.R. Palekar, A review on approval process and regulation of medical devices as per US FDA and CDSCO. Int. J. Drug Regul. Aff. 11, 61–70 (2023). https://doi.org/10.22270/ijdra.v11i1.586 [CrossRef] [Google Scholar]
- K. Ganapathy, Artificial intelligence and healthcare regulatory and legal concerns. Telehealth Med. Today (2021). https://doi.org/10.30953/tmt.v6.252 [Google Scholar]
- B. Chan, Applying a common enterprise theory of liability to clinical AI systems. Am. J. Law Med. 47, 351–385 (2021). https://doi.org/10.1017/amj.2022.1 [CrossRef] [PubMed] [Google Scholar]
- K. Tobia, A. Nielsen, A. Stremitzer, When does physician use of AI increase liability? J. Nucl. Med. 62, 17–21 (2021). https://doi.org/10.2967/jnumed.120.256032 [CrossRef] [PubMed] [Google Scholar]
- C. Cestonaro et al., Defining medical liability when artificial intelligence is applied on diagnostic algorithms: A systematic review. Front. Med. (Lausanne) (2023). https://doi.org/10.3389/fmed.2023.1305756 [Google Scholar]
- M.B. Forcier, L. Khoury, N. Vézina, Liability issues for the use of artificial intelligence in health care in Canada: AI and medical decision-making. Dalhousie Med. J. 46 (2020). https://doi.org/10.15273/dmj.Vol46No2.10140 [CrossRef] [Google Scholar]
- D. Egemen et al., Artificial intelligence-based image analysis in clinical testing: Lessons from cervical cancer screening. J. Natl. Cancer Inst. (2024). https://doi.org/10.1093/jnci/djad202 [Google Scholar]
- R. Singh, R. Rochwani, S. Oberoi, Informed consent and responses of surgical patients: A study in North India. Natl. J. Physiol. Pharm. Pharmacol. 11, 1 (2021). https://doi.org/10.5455/njppp.2021.11.06217202109072021 [Google Scholar]
- K. Astromskė, E. Peičius, P. Astromskis, Ethical and legal challenges of informed consent applying artificial intelligence in medical diagnostic consultations. AI Soc. 36, 509–520 (2021). https://doi.org/10.1007/s00146-020-01008-9 [CrossRef] [Google Scholar]
- G. Cohen, Informed consent and medical artificial intelligence: What to tell the patient? SSRN Electron. J. (2020). https://doi.org/10.2139/ssrn.3529576 [Google Scholar]
- H. Saripan et al., Artificial intelligence and medical negligence in Malaysia: Confronting the informed consent dilemma. Int. J. Acad. Res. Bus. Soc. Sci. 11 (2021). https://doi.org/10.6007/ijarbss/v11-i11/11254 [Google Scholar]
- U.J. Muehlematter, P. Daniore, K.N. Vokinger, Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015–20): A comparative analysis. Lancet Digit. Health 3, e195–e203 (2021). https://doi.org/10.1016/S2589-7500(20)30292-2 [CrossRef] [Google Scholar]
- E. Wu et al., How medical AI devices are evaluated: Limitations and recommendations from an analysis of FDA approvals. Nat. Med. 27, 582–584 (2021). https://doi.org/10.1038/s41591-021-01312-x [CrossRef] [PubMed] [Google Scholar]
- H.B. Harvey, V. Gowda, How the FDA regulates AI. Acad. Radiol. 27, 58–61 (2020). https://doi.org/10.1016/j.acra.2019.09.017 [CrossRef] [Google Scholar]
- R.R. Fletcher et al., Addressing fairness, bias, and appropriate use of artificial intelligence and machine learning in global health. Front. Artif. Intell. 3 (2021). https://doi.org/10.3389/frai.2020.561802 [CrossRef] [Google Scholar]
- S. Tripathi, T.H. Musiolik, Fairness and ethics in artificial intelligence-based medical imaging. (2022). https://doi.org/10.4018/978-1-7998-7888-9.ch004 [Google Scholar]
- C. Brown, R. Nazeer, A. Gibbs, P. Le Page, A.R. Mitchell, Breaking bias: The role of artificial intelligence in improving clinical decision-making. Cureus 5 (2023). https://doi.org/10.7759/cureus.36415 [Google Scholar]
- S.V. Ettari, E. Roden, V. Ahuja, U. Samadani, Oculogica: An eye-catching innovation in health care and the privacy implications of artificial intelligence and machine learning in diagnostics for the human brain. SMU Sci. Technol. Law Rev. 25, 23 (2022). https://doi.org/10.25172/smustlr.25.1.3 [CrossRef] [Google Scholar]
- S. Tseng et al., Spectrum bias in algorithms derived by artificial intelligence: A case study in detecting aortic stenosis using electrocardiograms. Eur. Heart J. Digit. Health 2, 561–567 (2021). https://doi.org/10.1093/ehjdh/ztab061 [CrossRef] [Google Scholar]
- H. Zhang, T. Hartvigsen, M. Ghassemi, Algorithmic fairness in chest X-ray diagnosis: A case study. MIT Case Stud. Soc. Ethical Responsib. Comput. Winter 2023 (2023). https://doi.org/10.21428/2c646de5.816cae0e [Google Scholar]
- N. Norori, Q. Hu, F.M. Aellen, F.D. Faraci, A. Tzovara, Addressing bias in big data and AI for health care: A call for open science. Patterns 2, 100347 (2021). https://doi.org/10.1016/j.patter.2021.100347 [CrossRef] [Google Scholar]
- D.B. Larson et al., Regulatory frameworks for development and evaluation of artificial intelligence–based diagnostic imaging algorithms: Summary and recommendations. J. Am. Coll. Radiol. 18, 413–424 (2021). https://doi.org/10.1016/j.jacr.2020.09.060 [CrossRef] [Google Scholar]
- G. Falco et al., Governing AI safety through independent audits. Nat. Mach. Intell. 3, 566–571 (2021). https://doi.org/10.1038/s42256-021-00370-7 [CrossRef] [Google Scholar]
- V. Sounderajah et al., Developing specific reporting guidelines for diagnostic accuracy studies assessing AI interventions: The STARD-AI steering group. Nat. Med. 26, 807–808 (2020). https://doi.org/10.1038/s41591-020-0941-1 [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.