Open Access
Issue |
BIO Web Conf.
Volume 152, 2025
International Conference on Health and Biological Science (ICHBS 2024)
|
|
---|---|---|
Article Number | 01036 | |
Number of page(s) | 14 | |
Section | Dense Matter | |
DOI | https://doi.org/10.1051/bioconf/202515201036 | |
Published online | 20 January 2025 |
- C. Li, L. Wang, Y. Li, Transformer and group parallel axial attention co-encoder for medical image segmentation. Sci. Rep. (2022). https://doi.org/10.1038/s41598-02220440-z. [Google Scholar]
- P.-H. Conze, G. Andrade-Miranda, V.K. Singh, V. Jaouen, D. Visvikis, Current and Emerging Trends in Medical Image Segmentation with Deep Learning. IEEE Trans. Radiat. Plasma Med. Sci. 7, 545–569 (2023). https://doi.org/10.1109/TRPMS.2023.3265863. [CrossRef] [Google Scholar]
- M.Z.H. Bhuiyan, N. Al, S. Saif, K.D. Gupta, Md.J. Alam, S. Talukder, Online Learning for X-Ray, CT or MRI. Springer (2023). https://doi.org/10.1007/978-3-031-47772-0_6. [Google Scholar]
- M. Sun, W. Zou, Z. Wang, S. Wang, Z. Sun, An Automated Framework for Histopathological Nucleus Segmentation with Deep Attention Integrated Networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 1–12. (2023). https://doi.org/10.1109/TCBB.2022.3233400. [Google Scholar]
- W. Yao, J. Bai, W. Liao, Y. Chen, M. Liu, Y. Xie, From CNN to Transformer: A Review of Medical Image Segmentation Models. J. Digit. Imaging (2024). https://doi.org/10.1007/s10278-024-00981-7. [Google Scholar]
- R. Wang, T. Lei, R. Cui, B. Zhang, H. Meng, A.K. Nandi, Medical image segmentation using deep learning: A survey. IET Image Process. (2022). https://doi.org/10.1049/ipr2.12419. [Google Scholar]
- J. Ma, Y. He, F. Li, L. Han, C. You, B. Wang, Segment anything in medical images. Nat. Commun. (2024). https://doi.org/10.1038/s41467-024-44824-z. [Google Scholar]
- H.-Y. Zhou, et al., nnFormer: Volumetric Medical Image Segmentation via a 3D Transformer. IEEE Trans. Image Process. 32, 4036–4045. (2023). https://doi.org/10.1109/TIP.2023.3293771. [CrossRef] [PubMed] [Google Scholar]
- Y. Liu, et al., An Improved Hybrid Network with a Transformer Module for Medical Image Fusion. IEEE J. Biomed. Health Inform. 27, 3489–3500. (2023). https://doi.org/10.1109/JBHI.2023.3264819. [CrossRef] [PubMed] [Google Scholar]
- S. Islam, et al., A comprehensive survey on applications of transformers for deep learning tasks. Expert Syst. Appl. (2024). https://doi.org/10.1016/j.eswa.2023.122666. [Google Scholar]
- L.L. Viteritti, R. Rende, F. Becca, Transformer Variational Wave Functions for Frustrated Quantum Spin Systems. Phys. Rev. Lett. 130, 236401. (2023). https://doi.org/10.1103/PhysRevLett.130.236401. [CrossRef] [PubMed] [Google Scholar]
- F. Shamshad, et al., Transformers in medical imaging: A survey. Med. Image Anal. (2023). https://doi.org/10.1016/j.media.2023.102802. [Google Scholar]
- J. Song, A.-X. Zhu, Y. Zhu, Transformer-Based Semantic Segmentation for Extraction of Building Footprints from Very-High-Resolution Images. Sensors. 23, 5166. (2023). https://doi.org/10.3390/s23115166. [CrossRef] [PubMed] [Google Scholar]
- J. Peng, Y. Wang, Medical Image Segmentation with Limited Supervision: A Review of Deep Network Models. IEEE Access. 9, 36827–36851. (2021). https://doi.org/10.1109/ACCESS.2021.3062380. [CrossRef] [Google Scholar]
- X. Lin, L. Yu, K. Cheng, Z. Yan, The Lighter the Better: Rethinking Transformers in Medical Image Segmentation Through Adaptive Pruning. IEEE Trans. Med. Imaging (2023). https://doi.org/10.1109/TMI.2023.3247814. [Google Scholar]
- H. Fang, J. An, H. Liu, J. Xiang, B. Zhao, F. Dunkin, A Lightweight Transformer with Strong Robustness Application in Portable Bearing Fault Diagnosis. IEEE Sens. J. 23, 9649–9657. (2023). https://doi.org/10.1109/JSEN.2023.3260469 [CrossRef] [Google Scholar]
- L. Alzubaidi, et al., Novel Transfer Learning Approach for Medical Imaging with Limited Labeled Data. Cancers 13, 71590. (2021). https://doi.org/10.3390/cancers13071590. [CrossRef] [PubMed] [Google Scholar]
- R. Thompson, et al., Effectiveness of transferring ultrasound deep learning models from adults to pediatrics for frame-based pneumonia classification. J. Acoust. Soc. Am. 153, A189. (2023). https://doi.org/10.1121/10.0018616. [CrossRef] [Google Scholar]
- Y. Li, J. Yang, J. Ni, A. Elazab, J. Wu, TA-Net: Triple attention network for medical image segmentation. Comput. Biol. Med. 137, 104836. (2021). https://doi.org/10.1016/j.compbiomed.2021.104836. [CrossRef] [Google Scholar]
- Q. Zhou, Q. Wang, Y. Bao, L. Kong, X. Jin, W. Ou, LAEDNet: A Lightweight Attention Encoder–Decoder Network for ultrasound medical image segmentation. Comput. Electr. Eng. 99, 107777. (2022). https://doi.org/10.1016/j.compeleceng.2022.107777. [CrossRef] [Google Scholar]
- L. Meng, W. Tan, J. Ma, R. Wang, X. Yin, Y. Zhang, Enhancing dynamic ECG heartbeat classification with lightweight transformer model. Artif. Intell. Med. 124, 102236. (2022). https://doi.org/10.1016/j.artmed.2022.102236. [CrossRef] [Google Scholar]
- L. Wang, et al., UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery. ISPRS J. Photogramm. Remote Sens. 190, 196–214. (2022). https://doi.org/10.1016/j.isprsjprs.2022.06.008. [CrossRef] [Google Scholar]
- W. Ying, et al., Efficient multi-objective evolutionary neural architecture search for UNets with diamond atrous convolution and Transformer for medical image segmentation. Appl. Soft Comput. 148, 110869. (2023). https://doi.org/10.1016/j.asoc.2023.110869. [CrossRef] [Google Scholar]
- J. Lang, Y. Liu, LCCF-Net: Lightweight contextual and channel fusion network for medical image segmentation. Biomed. Signal Process. Control. 86, 105134. (2023). https://doi.org/10.1016/j.bspc.2023.105134. [CrossRef] [Google Scholar]
- Z. Liang, K. Zhao, G. Liang, S. Li, Y. Wu, Y. Zhou, MAXFormer: Enhanced transformer for medical image segmentation with multi-attention and multi-scale features fusion. Knowl. Based Syst. 280, 110987. (2023). https://doi.org/10.1016/j.knosys.2023.110987. [CrossRef] [Google Scholar]
- Q. Zhou, Z. Sun, L. Wang, B. Kang, S. Zhang, X. Wu, Mixture lightweight transformer for scene understanding. Comput. Electr. Eng. 108, 108698. (2023). https://doi.org/10.1016/j.compeleceng.2023.108698. [CrossRef] [Google Scholar]
- Y. Yang, L. Zhang, L. Ren, X. Wang, MMViT-Seg: A lightweight transformer and CNN fusion network for COVID-19 segmentation. Comput. Methods Programs Biomed. 230, 107348. (2023). https://doi.org/10.1016/j.cmpb.2023.107348. [CrossRef] [Google Scholar]
- Y. Yang, L. Zhang, L. Ren, L. Zhou, X. Wang, SuperMini-seg: An ultra lightweight network for COVID-19 lung infection segmentation from CT images. Biomed. Signal Process. Control. 85, 104896. (2023). https://doi.org/10.1016/j.bspc.2023.104896. [CrossRef] [Google Scholar]
- Q. Li, B. Sun, B. Bhanu, Lite-FENet: Lightweight multi-scale feature enrichment network for few-shot segmentation. Knowl. Based Syst. 278, 110887. (2023). https://doi.org/10.1016/j.knosys.2023.110887. [CrossRef] [Google Scholar]
- Z. Ou, et al., RTSeg-net: A lightweight network for real-time segmentation of fetal head and pubic symphysis from intrapartum ultrasound images. Comput. Biol. Med. 175, 108501. (2024). https://doi.org/10.1016/j.compbiomed.2024.108501. [CrossRef] [Google Scholar]
- H. Luo, D. Zhou, Y. Cheng, S. Wang, MPEDA-Net: A lightweight brain tumor segmentation network using multi-perspective extraction and dense attention. Biomed. Signal Process. Control. 91, 106054. (2024). https://doi.org/10.1016/j.bspc.2024.106054. [CrossRef] [Google Scholar]
- A. Iqbal, M. Sharif, Memory-efficient transformer network with feature fusion for breast tumor segmentation and classification task. Eng. Appl. Artif. Intell. 127, 107292. (2024). https://doi.org/10.1016/j.engappai.2023.107292. [CrossRef] [Google Scholar]
- W. Zhang, T. Li, Y. Zhang, G. Pei, X. Jiang, Y. Yao, LTFormer: A light-weight transformer-based self-supervised matching network for heterogeneous remote sensing images. Inf. Fusion. 109, 102425. (2024). https://doi.org/10.1016/j.inffus.2024.102425 [CrossRef] [Google Scholar]
- L. Tong, et al., LiViT-Net: A U-Net-like, lightweight Transformer network for retinal vessel segmentation. Comput. Struct. Biotechnol. J. 24, 213–224. (2024). https://doi.org/10.1016/j.csbj.2024.03.003. [CrossRef] [Google Scholar]
- B. Li, S. Tang, W. Li, LMFormer: Lightweight and multi-feature perspective via transformer for human pose estimation. Neurocomputing. 594, 127884. (2024). https://doi.org/10.1016/j.neucom.2024.127884. [CrossRef] [Google Scholar]
- Z. Lu, C. She, W. Wang, Q. Huang, LM-Net: A light-weight and multi-scale network for medical image segmentation. Comput. Biol. Med. 168, 107717. (2024). https://doi.org/10.1016/j.compbiomed.2023.107717. [CrossRef] [Google Scholar]
- Z. Xiao, Y. Zhang, Z. Deng, F. Liu, Light3DHS: A lightweight 3D hippocampus segmentation method using multiscale convolution attention and vision transformer. Neuroimage. 292, 120608. (2024). https://doi.org/10.1016/j.neuroimage.2024.120608. [CrossRef] [PubMed] [Google Scholar]
- Y. Zhang, Z. Chen, X. Yang, Light-M: An efficient lightweight medical image segmentation framework for resource-constrained IoMT. Comput. Biol. Med. 170, 108088 (2024). https://doi.org/10.1016/j.compbiomed.2024.108088. [CrossRef] [Google Scholar]
- Y. Yin, S. Luo, J. Zhou, L. Kang, C.Y.-C. Chen, LDCNet: Lightweight dynamic convolution network for laparoscopic procedures image segmentation. Neural Netw. 170, 441–452. (2024). https://doi.org/10.1016/j.neunet.2023.11.055. [CrossRef] [PubMed] [Google Scholar]
- B. Hu, et al., LeaNet: Lightweight U-shaped architecture for high-performance skin cancer image segmentation. Comput. Biol. Med. 169, 107919. (2024). https://doi.org/10.1016/j.compbiomed.2024.107919. [CrossRef] [Google Scholar]
- M. Liao, H. Tang, X. Li, P. Vijayakumar, V. Arya, B.B. Gupta, A lightweight network for abdominal multi-organ segmentation based on multi-scale context fusion and dual self-attention. Inf. Fusion. 108, 102401. (2024). https://doi.org/10.1016/j.inffus.2024.102401. [CrossRef] [Google Scholar]
- Y. He, Z. Gao, Y. Li, Z. Wang, A lightweight multi-modality medical image semantic segmentation network base on the novel UNeXt and Wave-MLP. Comput. Med. Imaging Graph. 111, 102311. (2024). https://doi.org/10.1016/j.compmedimag.2023.102311. [CrossRef] [Google Scholar]
- Y. Cao, et al., A light-weight rectangular decomposition large kernel convolution network for deformable medical image registration. Biomed. Signal Process. Control 95, 106476. (2024). https://doi.org/10.1016/j.bspc.2024.106476. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.