Open Access
Issue |
BIO Web Conf.
Volume 154, 2025
15th International Conference on Global Resource Conservation (ICGRC 2024) in conjunction with the 1st International Conference on Jamu and Alternative Medicine (ICJAM 2024)
|
|
---|---|---|
Article Number | 03006 | |
Number of page(s) | 14 | |
Section | Jamu and Alternative Medicine | |
DOI | https://doi.org/10.1051/bioconf/202515403006 | |
Published online | 28 January 2025 |
- C. Franceschi and J. Campisi, Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 69, S4–S9 (2014). doi: 10.1093/gerona/glu057. [CrossRef] [PubMed] [Google Scholar]
- A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, Cancer-related inflammation, Nature. 454, 436–444 (2008). doi: 10.1038/nature07205. [CrossRef] [PubMed] [Google Scholar]
- N. Michels, C. Van Aart, J. Morisse, A. Mullee, I. Huybrechts, Chronic inflammation towards cancer incidence: A systematic review and meta-analysis of epidemiological studies. Critical Reviews in Oncology/Hematology. 157, 103177 (2021). doi: 10.1016/j.critrevonc.2020.103177. [CrossRef] [PubMed] [Google Scholar]
- M. E. Lynch and C. P. N. Watson, The pharmacotherapy of chronic pain: a review. Pain Res Manag. 11, 11–38 (2006). doi: 10.1155/2006/642568. [CrossRef] [PubMed] [Google Scholar]
- P. J. Delves, S. J. Martin, D. R. Burton, and I. M. Roitt, Roitt’s essential immunology, 13th edition. Chichester, West Sussex; Hoboken, [NJ]: Wiley Blackwell, 2017. [Google Scholar]
- Z. Shen, X. Liu, G. Fan, J. Na, Q. Liu, F. Liu, Z. Zhang, and L. Zhong, Improving the therapeutic efficacy of oncolytic viruses for cancer: targeting macrophages. J Transl Med. 21, 842 (2023). doi: 10.1186/s12967-023-04709-z. [CrossRef] [PubMed] [Google Scholar]
- L. Pérez-Regidor et al., Small molecules as Toll-like receptor 4 modulators drug and in-house computational repurposing. Biomedicines. 10, 2326 (2022). doi: 10.3390/biomedicines10092326. [CrossRef] [PubMed] [Google Scholar]
- S. J. Stohs, H. Miller, and G. R. Kaats, A review of the efficacy and safety of banaba (Lagerstroemia speciosa L.) and corosolic acid. Phytother Res. 26, 317–324 (2012). doi: 10.1002/ptr.3664. [CrossRef] [PubMed] [Google Scholar]
- S. K. Tripathi, S. Behera, M. Panda, G. Zengin, and B. K. Biswal, A comprehensive review on pharmacology and toxicology of bioactive compounds of Lagerstroemia speciosa (L.) Pers., CTM. 7, 504–513 (2021). doi: 10.2174/2215083806999201211213931. [CrossRef] [Google Scholar]
- Y. Bramasto et al., Trees of the city: Profil tanaman hutan untuk perkotaan wilayah Jawa Barat, Banten dan DKI Jakarta. Bogor: Balai Penelitian Teknologi Perbenihan Tanaman Hutan, 2015. [Google Scholar]
- A. H. Karsono, O. M. Tandrasasmita, and R. R. Tjandrawinata, Bioactive fraction from Lagerstroemia speciosa leaves (DLBS3733) reduces fat droplet by inhibiting adipogenesis and lipogenesis. J Exp Pharmacol. 11, 39–51 (2019). doi: 10.2147/JEP.S181642. [CrossRef] [Google Scholar]
- E. W. C. Chan, L. N. Tan, and S. K. Wong, Phytochemistry and pharmacology of Lagerstroemia speciosa: a natural remedy for diabetes. Int J Herb Med. 2, 81–87 (2014). [Google Scholar]
- N. E. H. Lezoul, M. Belkadi, F. Habibi, and F. Guillén, Extraction processes with several solvents on total bioactive compounds in different organs of three medicinal plants. Molecule. 25, 4672 (2020). doi: 10.3390/molecules25204672. [CrossRef] [Google Scholar]
- S. B. Bagade and M. Patil, Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: a review. Crit Rev Anal Chem. 51, 138–149 (2021). doi: 10.1080/10408347.2019.1686966. [CrossRef] [PubMed] [Google Scholar]
- M. H. Widyananda, N. Rosyadah, L. Muflikhah, N. Widodo, D. Dwijayanti, and S. M. Ulfa, Lagerstroemin from Lagerstroemia speciosa as antibreast cancer candidate targeting AURKA, EGFR and SRC protein: a comprehensive computational study. Trends Sci. 21, 8205 (2024). doi: 10.48048/tis.2024.8205. [CrossRef] [Google Scholar]
- E. N. Sembiring, B. Elya, and R. Sauriasari, Phytochemical screening, total flavonoid and total phenolic content and antioxidant activity of different parts of Caesalpinia bonduc (L.) Roxb. PJ. 10, 123–127 (2017). doi: 10.5530/pj.2018.1.22. [CrossRef] [Google Scholar]
- N. Ghorai, S. Chakraborty, S. Guchhait, S. K. Saha, and S. Biswas, Estimation of total terpenoids concentration in plant tissues using a monoterpene, linalool as standard reagent. Protocol Exchange. (2012). doi: 10.1038/protex.2012.055. [Google Scholar]
- A. Łukowski, R. Jagiełło, P. Robakowski, D. Adamczyk, and P. Karolewski, Adaptation of a simple method to determine the total terpenoid content in needles of coniferous trees. Plant Science. 314, 111090 (2022). doi: 10.1016/j.plantsci.2021.111090. [CrossRef] [PubMed] [Google Scholar]
- P. Tan, The determination of total alkaloid, polyphenol, flavonoid and saponin contents of Pogang gan (Curcuma sp.). International Journal of Biology. 10, 42 (2018). doi: 10.5539/ijb.v10n4p42. [CrossRef] [Google Scholar]
- D. R. Dwijayanti, S. Puspitarini, N. Widodo, Piper betle L. leaves extract potentially reduce the nitric oxide production on LPS-induced RAW 264.7 Cell Lines. JEL. 13, 78–83, (2023). doi: 10.21776/ub.jels.2023.013.02.02. [Google Scholar]
- R. Ningsih, M. Rafi, A. Tjahjoleksono, M. Bintang, and R. Megia, Ripe pulp metabolite profiling of ten Indonesian dessert banana cultivars using UHPLC-QOrbitrap HRMS. Eur Food Res Technol. 247, 2821–2830 (2021). doi: 10.1007/s00217-021-03834-7. [CrossRef] [Google Scholar]
- A. Singh, V. Bajpai, S. Kumar, K. R. Sharma, and B. Kumar, Profiling of gallic and ellagic acid derivatives in different plant parts of Terminalia arjuna by HPLC-ESIQTOF-MS/MS. Natural Product Communications. 11, 1934578X1601100227 (2016). doi: 10.1177/1934578X1601100227. [CrossRef] [Google Scholar]
- A. Daina, O. Michielin, and V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 7, 42717 (2017). doi: 10.1038/srep42717. [CrossRef] [PubMed] [Google Scholar]
- A. L. Lomize et al., PerMM: a web tool and database for ana lysis of passive membrane permeability and translocation pathways of bioactive molecules. J Chem Inf Model. 59, 3094–3099 (2019). doi: 10.1021/acs.jcim.9b00225. [CrossRef] [PubMed] [Google Scholar]
- E. Susanti, In silico analysis of bioactive compounds of Hibiscus sabdariffa as potential agonists of LXR to inhibit the atherogenesis process, International Conference on Bioinformatics and Nano-Medicine from Natural Resources for Biomedical Research: 3rd Annual Scientific Meeting for Biomedical Sciences, Malang, Indonesia (2019) 020008. doi: 10.1063/1.5109983. [Google Scholar]
- A. Zeb, Concept, mechanism, and applications of phenolic antioxidants in foods. J Food Biochem. 44, (2020). doi: 10.1111/jfbc.13394. [PubMed] [Google Scholar]
- E. N. Fung, Y. Xia, A.-F. Aubry, J. Zeng, T. Olah, and M. Jemal, Full-scan high resolution accurate mass spectrometry (HRMS) in regulated bioanalysis: LC–HRMS for the quantitation of prednisone and prednisolone in human plasma. Journal of Chromatography B. 879, 2919–2927 (2011). doi: 10.1016/j.jchromb.2011.08.025. [CrossRef] [Google Scholar]
- D. Tungmunnithum, A. Thongboonyou, A. Pholboon, and A. Yangsabai, Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines (Basel). 5, 93 (2018). doi: 10.3390/medicines5030093. [PubMed] [Google Scholar]
- K. Ita, Chapter 5 Chemical permeation enhancers, in Transdermal Drug Delivery, K. Ita, Ed., Academic Press. 2020, 63–96. doi: 10.1016/B978-0-12-822550-9.00005-3. [CrossRef] [Google Scholar]
- J. DeRuiter, Carboxylic Acid Structure and Chemistry, 2005. [Google Scholar]
- J.-R. Du, F.-Y. Long, and C. Chen, Chapter Six Research Progress on Natural Triterpenoid Saponins in the Chemoprevention and Chemotherapy of Cancer, in The Enzymes, vol. 36, S. Z. Bathaie and F. Tamanoi, Eds., in Natural Products and Cancer Signaling: Isoprenoids, Polyphenols and Flavonoids, vol. 36. Academic Press (2014) 95–130. doi: 10.1016/B978-0-12-802215-3.00006-9. [CrossRef] [Google Scholar]
- C. J. Ononamadu and A. Ibrahim, Molecular docking and prediction of ADME/druglikeness properties of potentially active antidiabetic compounds isolated from aqueous-methanol extracts of Gymnema sylvestre and Combretum micranthum. BioTechnologia (Pozn). 102, 85–99 (2021). doi: 10.5114/bta.2021.103765. [CrossRef] [Google Scholar]
- D. A. Filimonov et al., Prediction of the biological activity spectra of organic compounds using the Pass online web resource. Chem Heterocycl Comp. 50, 444–457 (2014). doi: 10.1007/s10593-014-1496-1. [CrossRef] [Google Scholar]
- P. Hankittichai et al., Artocarpus lakoocha extract inhibits LPS-induced inflammatory response in RAW 264.7 Macrophage Cells. Int J Mol Sci. 21, 1355 (2020). doi: 10.3390/ijms21041355. [CrossRef] [PubMed] [Google Scholar]
- A. Zamyatina and H. Heine, Lipopolysaccharide recognition in the crossroads of TLR4 and Caspase-4/11 Mediated Inflammatory Pathways. Front Immunol. 11, 585146 (2020). doi: 10.3389/fimmu.2020.585146. [CrossRef] [PubMed] [Google Scholar]
- C. Park, H.-J. Cha, H. Lee, G.-Y. Kim, and Y. H. Choi, The regulation of the TLR4/NF-κB and Nrf2/HO-1 signaling pathways is involved in the inhibition of lipopolysaccharide-induced inflammation and oxidative reactions by morroniside in RAW 264.7 macrophages. Archives of Biochemistry and Biophysics. 706, 108926, (2021). doi: 10.1016/j.abb.2021.108926. [CrossRef] [PubMed] [Google Scholar]
- W. Nafisah et al., Potential of bioactive compound of Cyperus rotundus L. rhizome extract as inhibitor of PD-L1/PD-1 interaction: An in silico study. ANRES. 56 (2022). doi: 10.34044/j.anres.2022.56.4.09. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.