Open Access
Issue
BIO Web Conf.
Volume 155, 2025
10th-ICCC – 10th International Conference on Climate Change “Climate Change, Plant and Health”
Article Number 01032
Number of page(s) 9
Section Impact of Depletion or Enhance of a Capability of Resources of Air, Water, Soil, and Vegetation
DOI https://doi.org/10.1051/bioconf/202515501032
Published online 29 January 2025
  • M. Devitha, Nandariyah, and Komariah. Dinamika produksi padi hitam anggota aliansi petani padi organik boyolali (APOLI) ditengah anomali iklim. Prosiding Seminar Nasional Kesehatan, Sains Dan Pembelajaran 1, 438 (2021) [Google Scholar]
  • I. Alaoui, O. el Ghadraoui, S. Serbouti, H. Ahmed, I. Mansouri, F. E. Kamari, A. Taroq, D. Ousaaid, W. Squalli, and A. Farah. The mechanisms of absorption and nutrients transport in plants: a review. Tropical Journal of Natural Product Research (TJNPR) 6, 8 (2022) [CrossRef] [Google Scholar]
  • Sukarman, A. R. Saidy, G. Rusmayadi, D. E. Adriani, S. Primananda, S. Suwardi, H. Wirianata, and C. D. A. Fitriana. Effect of water deficit of ultisols, entisols, spodosols, and histosols on oil palm productivity in Central Kalimantan. Sains Tanah Journal Soil Science Agroclimatology 19, 180 (2022) [CrossRef] [Google Scholar]
  • T. Kreszies, L. Schreiber, and K. Ranathunge. Suberized transport barriers in Arabidopsis, barley and rice roots: from the model plant to crop species. Journal of Plant Physiology 227, 75 (2018) [CrossRef] [PubMed] [Google Scholar]
  • F. K. Ricachenevsky, A. T. de AraujoJunior , J. P. Fett, and R. A. Sperotto. You shall not pass: root vacuoles as a symplastic checkpoint for metal translocation to shoots and possible application to grain nutritional quality. Frontier Plant Science 9, (2018) [Google Scholar]
  • S. Nahar, J. Kalita, L. Sahoo, and B. Tanti. Morphophysiological and molecular effect of drought stress in rice. Annals of Plant Sciences 5, 1409 (2016) [CrossRef] [Google Scholar]
  • M. Ashraf and P. J. C. Harris. Photosynthesis under stressful environments: an overview. Photosynthesis 51, 163 (2013) [CrossRef] [Google Scholar]
  • F. Zulfiqar, N. A. Akram, and M. Ashraf. Osmoprotection in plant under abiotic stresses: new insights into a classical phenomenon. Planta 251, 3 (2020) [CrossRef] [Google Scholar]
  • M. F. Seleiman, N. Al-Suhaibani, N. Ali, M. Akmal, M. Alotaibi, Y. Refay, T. Dindaroglu, H. H. Abdul-Wajid, and M. L. Battaglia. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10, 259 (2021) [CrossRef] [PubMed] [Google Scholar]
  • S. Spormann, P. Nadais, F. Sousa, M. Pinto, M. Martins, B. Sousa, F. Fidalgo, and C. Soares. Accumulation of proline under contamined soils. Antioxidants 12, 666 (2023) [CrossRef] [PubMed] [Google Scholar]
  • A. Y. Rahayu, T. A. D. Haryanto, and S. N. Iftitah. Pertumbuhan dan hasil padi gogo hubungannya dengan kandungan prolin dan 2-acetyl-1-pyrroline pada kondisi kadar air tanah berbeda. Kultivasi 15, (2016). [CrossRef] [Google Scholar]
  • G. S. Samidjo. Eksistensi varietas padi lokal pada berbagai ekosistem sawah irigasi: studi di daerah istimewa Yogyakarta. Planta Tropika 5, 34 (2017) [CrossRef] [Google Scholar]
  • T. M. Sihombing, D. Damanhuri, and A. Ainurrasjid. Uji ketahanan tiga genotip padi hitam (Oryza sativa L.) terhadap cekaman kekeringan. Produksi Tanaman 5, (2017). [Google Scholar]
  • M. A. Mudhor, P. Dewanti, T. Handoyo, and T. Ratnasari. Pengaruh cekaman kekeringan terhadap pertumbuhan dan produksi tanaman padi hitam varietas jeliteng. Agrikultura 33, 247 (2022) [CrossRef] [Google Scholar]
  • N. Fadhilah, K. Karno, and B. A. Kristanto. Respon pertumbuhan dan produksi padi gogo (Oryza sativa L.) terhadap cekaman kekeringan dan pemupukan silika. Journal of Agro Complex 5, 1 (2021) [Google Scholar]
  • G. Paudel, T. Bilova, R. Schmidt, U. Greifenhagen, R. Berger, E. Tarakhovskaya, S. Stöckhardt, G. U. Balcke, K. Humbeck, W. Brandt, A. Sinz, T. Vogt, C. Birkemeyer, L. Wessjohann, and A. Frolov. Osmotic stress is accompanied by protein glycation n Arabidopsis thaliana. Journal of Experimental Botany 67, 6283 (2016) [CrossRef] [PubMed] [Google Scholar]
  • L. S. Bates, R. P. Waldren, and I. D. Teare. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205 (1973) [CrossRef] [Google Scholar]
  • A. P. Kerawing, S. Suryanti, and S. P. Purwanti. Properties of rooting, growth and yield of corn (Zea mays L) at various watering intervals. Jurnal Agronomi Tanaman Tropika (JUATIKA) 6, 72 (2024) [CrossRef] [Google Scholar]
  • S. Mayly, A. Rauf, C. Hanum, and H. Hanum. Root bioassay of upland rice varieties on several soil moisture gradients. Proceedings of The Annual International Conference, Syiah Kuala University - Life Sciences & Engineering 5, (2015). [Google Scholar]
  • Y. Kim, Y. S. Chung, E. Lee, P. Tripathi, S. Heo, and K.-H. Kim. Root response to drought stress in rice (Oryza sativa L.). International Journal of Molecular Sciences 21, 1513 (2020) [CrossRef] [PubMed] [Google Scholar]
  • S. A. Nio and P. Torey. Karakter morfologi akar sebagai indikator kekurangan air pada tanaman. Jurnal Bios Logos 3, (2013). [Google Scholar]
  • P. Rosawanti. Pertumbuhan akar kedelai pada cekaman kekeringan. Daun: Jurnal Ilmiah Pertanian Dan Kehutanan 3, 21 (2016) [CrossRef] [Google Scholar]
  • C. Maurel and P. Nacry. Root architecture and hydraulis converge for acclimation to changing water availability. Nature Plants 6, 744 (2020) [CrossRef] [PubMed] [Google Scholar]
  • S. Suprayogi, M. A. Praptiwi, A. Iqbal, and T. J. Agustono. Keragaan agronomic populasi F4 hasil persilangan padi IR 36 dengan padi merah PWR. Vegetalika 10, 81 (2021) [CrossRef] [Google Scholar]
  • L. Munawaroh, E. Sulistyono, and I. Lubis. Karakter morfologi dan fisiologi yang berkaitan dengan efisiensi pemakaian air pada beberapa varietas padi gogo. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy) 44, 1 (2016) [CrossRef] [Google Scholar]
  • P. Sanjaya, R. Pratama, A. Karyanto, M. S. Hadi, and K. F. Hidayat. Pertumbuhan dan produksi padi varietas mapan 05 (Oryza sativa L.) pada beberapa taraf kadar air yang dikontrol oleh mikrokontroler arduino uno. Jurnal Agrotek Tropika 12, 198 (2024) [Google Scholar]
  • A. Pandey, A. Kumar, D.S. Pandey, P. D. Thongbam. Rice quality under water stress. Indian Journal of Advances in Plant Research (IJAPR) 1, 2 (2014) [Google Scholar]
  • T. A. Rizwan, M. Prasetianto, and A. Ariffin. Meningkatnya ketersediaan air akibat perubahan iklim dan pengaruhnya terhadap produktivitas sorgum (Sorgum bicolor L.). Produksi Tanaman 11, 731 (2023) [CrossRef] [Google Scholar]
  • D. K. Gulo and N. Nurhayati. Proses fisiologis pembentukan protein kedelai pada kondisi tanaman mengalami cekaman kekeringan. Tabela Jurnal Pertanian Berkelanjutan 1, 15 (2023) [Google Scholar]
  • S. A. Nugroho, R. Taufika, and I. L. Novenda. Analisis kandungan klorofil Colocasia esculenta, Theobroma cacao, Carica papaya, Dieffenbachia sp, dan Codiaeum variegatum. Bioma: Jurnal Biologi dan Pembelajaran Biologi 6, 131 (2021) [CrossRef] [Google Scholar]
  • N. Rahmawati and A. P. Yasvi. Improvement in physio-biochemical characteristics of shallot plants with nano silica at several levels of drought stress. IOP Conference Series: Earth Environment Science 1302, 012032 (2024) [CrossRef] [Google Scholar]
  • G. Wang, F. Zeng, P. Song, B. Sun, Q. Wang, and J. Wang. Effect of reduced chlorophyll content on photosystem functions and photosynthetic electron transport rate in rice leaves. Journal of Plant Physiology 272, 153669 (2022) [CrossRef] [PubMed] [Google Scholar]
  • F. Hu, Y. Zhang, and J. Guo. Effects of drought stress on photosynthetic physiological characteristics, leaf microstructure, and related gene expression of yellow horn. Plant Signaling & Behavior (2023) [Google Scholar]
  • S. Silaen. Pengaruh transpirasi tumbuhan dan komponen didalamnya. Agroprimatech 5, 14 (2021) [CrossRef] [Google Scholar]
  • L. Qian, S. Huang, Z. Song, S. Fahad, K. Dawar, S. Danish, H. Saif, K. Shahzad, M. J. Ansari, and S. H. Salmen. Effect of carboxymethyl cellulose and gibberellic acid- enriched biochar on osmotic stress tolerance in cotton. BMC Plant Biology 24, 137 (2024) [CrossRef] [PubMed] [Google Scholar]
  • T. K. Acharjee, M. A. Mojid, and K. Haldar. Yield and water productivity variation of Boro rice with irrigation strategies and transplanting dates under climate change - a case study in south-western Bangladesh. Sains Tanah Journal of Soil Science and Agroclimatology 19, 60 (2022) [Google Scholar]
  • Q. Li, Y. Gao, A. K. M. Hamani, Y. Fu, J. Liu, H. Wang, and X. Wang. Effect of warming and drought stress on the coupling of photosynthesis and transpiration in winter wheat (Triticum aestivum L.). Applied Sciences 13, 2759 (2023) [CrossRef] [Google Scholar]
  • A. Daszkowska-Golec and I. Szarejko. Open or close the gate- stomata action under the control of phytohormones in drought stress conditions. Frontier Plant Science 4, (2013). [Google Scholar]
  • Y. Koentjoro, E. Purwanto, and D. Purnomo. Stomatal behavior of soybean under drought stress with silicon application. Annals of Agri-Bio Research 25, 103 (2020) [Google Scholar]
  • J. Liu and Y.S. Wang. Proline metabolism and molecular cloning of AmP5C5 in the mangrove Avicenniar marina under heat stress. Ecotoxicology 29, 698 (2020) [CrossRef] [PubMed] [Google Scholar]
  • A. Batool, A. Rashid, I. Aziz, and M. Ahmed. Analysis of water stress characteristics in Phaseolus vulgaris. Pakistan Journal Of Botani 55, (2023). [Google Scholar]
  • B. Shicun, L. U. Yani, X. U. Wujun, C. Boqing, W. Guanglong, and X. Aisheng. Garlic circadian clock genes AsRVE1 and AsRVE2 and their expressiong analysis under osmotic stress. Acta Horticulturae Sinica 48, 1706 (2021) [Google Scholar]
  • S. Hayat, Q. Hayat, M. N. Alyemeni, A. S. Wani, J. Pichtel, and A. Ahmad. Role of proline under changing environments. Plant Signal Behavior 7, 1456 (2012) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.