Open Access
Issue |
BIO Web Conf.
Volume 155, 2025
10th-ICCC – 10th International Conference on Climate Change “Climate Change, Plant and Health”
|
|
---|---|---|
Article Number | 04002 | |
Number of page(s) | 15 | |
Section | Pollution and Contamination of Land Surface and Atmosphere | |
DOI | https://doi.org/10.1051/bioconf/202515504002 | |
Published online | 29 January 2025 |
- Ratnawati, B., Yani, M., Suprihatin, S., & Hardjomidjojo, H. (2023). Waste processing techniques at the landfill site using the material flow analysis method. Global Journal of Environmental Science and Management, 9(1), 73-86. https://doi.org/10.22034/gjesm.2023.01 [Google Scholar]
- Sarmah, P., Katsumi, T., Yamawaki, A., Takai, A., Omine, K., Ishiguro, T., Doi, Y., Nakase, Y., & Ideguchi, S. (2021). Physical and mechanical properties of waste ground at inert waste landfills. Waste Management, 132(July), 1-11. https://doi.org/10.1016/j.wasman.2021.07 [CrossRef] [Google Scholar]
- Ministry of Environment and Forestry. (2023). National Waste Management Information System (SIPSN). Retrieved from: https://sipsn.menlhk.go.id/sipsn/ [Google Scholar]
- Muyassar, M., & Budianta, W. (2021). Pencemaran Logam Berat Pada Tanah Di Sekitar Tempat Pembuangan Akhir (Tpa) Sampah Piyungan, Bantul, Yogyakarta. Kurvatek, 6(1), 11-22. https://doi.org/10.33579/krvtk.v6i1 [CrossRef] [Google Scholar]
- Hanif, V. F., & Pohan, A. F. (2024). Suseptibilitas Magnetik Pada Tanah Di Sekitar Tempat Pemrosesan Akhir Sampah (TPAS) Regional Payakumbuh Sebagai Indikator Polusi Logam Berat. Jurnal Fisika Unand, 13(2), 303-309. https://doi.org/10.25077/jfu.13.2.303-309.2024 [CrossRef] [Google Scholar]
- Liu, Y., & Ma, R. (2020). Human health risk assessment of heavy metals in groundwater in the luan river catchment within the North China Plain. Geofluids., 2020 https://doi.org/10.1155/2020/8391793 [Google Scholar]
- Azhar, U., Ahmad, H., Shafqat, H., Babar, M., Shahzad Munir, H. M., Sagir, M., Arif, M., Hassan, A., Rachmadona, N., Rajendran, S., Mubashir, M., & Khoo, K. S. (2022). Remediation techniques for elimination of heavy metal pollutants from soil: A review. Environmental Research, 214(P4), 113918. https://doi.org/10.1016/j.envres.2022.113918 [CrossRef] [Google Scholar]
- Mohan, S., & Joseph, C. P. (2021). Potential Hazards due to Municipal Solid Waste Open Dumping in India. Journal of the Indian Institute of Science, 101(4), 523-536. https://doi.org/10.1007/s41745-021-00242-4 [CrossRef] [Google Scholar]
- Idowu, I. A., Atherton, W., Hashim, K., Kot, P., Alkhaddar, R., Alo, B. I., & Shaw, A. (2019). An analyses of the status of landfill classification systems in developing countries: Sub Saharan Africa landfill experiences. Waste Management, 87, 761-771. https://doi.org/10.1016/j.wasman.2019.03.011 [CrossRef] [Google Scholar]
- Adimalla, N., and Wang, H. (2018). Distribution, contamination, and health risk assessment of heavy metals in surface soils from northern Telangana, India. Arabian Journal of Geosciences, 11(21), 684. https://doi.org/10.1007/s12517-018-4028-y [CrossRef] [Google Scholar]
- Ghaida Fathassabilla, A., & Budianta, W. (2023). PENCEMARAN TANAH OLEH Pb DAN Cd DI SEKITAR TEMPAT PEMBUANGAN AKHIR (TPA) PUTRI CEMPO, KOTA SURAKARTA. Kurvatek, 8(1), 81-92. https://doi.org/10.33579/krvtk.v8i1.3919 [CrossRef] [Google Scholar]
- Harahap, F. S., Walida, H., & Purnama, I. (2023). Karakteristik Sifat Kimia Tanah Dan Kesuburan Tanah Pada Lahan Pertanian Di Beberapa Kecamatan Rantau Selatan Kabupaten Labuhanbatu. Seminar Nasional Fakultas Ekonomi Dan Sains Teknologi (SINERGITEK), 1(1). [Google Scholar]
- Nakayama, K., & Wagatsuma, K. (2021). Multicomponent internal standard methods for determination of vanadium, chromium, nickel, and copper in tool steel samples in continuum-light-source flame atomic absorption spectrometry. ISIJ International, 61(7), 2122-2126. https://doi.org/10.2355/isijinternational.ISIJINT-2020-732 [CrossRef] [Google Scholar]
- Arifin, Y., & Waluyo, D. (2022). Evaluasi Pembagian Air Pada Saluran Sekunder Di Daerah Irigasi Wadaslintang Barat Kabupaten Kebumen Provinsi Jawa Tengah. TEKSLING: Jurnal Teknik Sipil Dan Lingkungan, 01(01), 52–56. [Google Scholar]
- Salam, A.K. (2020). Soil Science. Jakarta: Akademika Pressindo [Google Scholar]
- Swardana, A., Iman, F. N., & Mutakin, J. (2023). STATUS UNSUR HARA MAKRO PADA INCEPTISOL YANG DITANAMI PAKCOY (Brassica rapa L.) Status of Macro Nutrients in Inceptisols Planted with Pakcoy (Brassica rapa L.). Jurnal Tanah Dan Sumberdaya Lahan, 10(2), 231-235. https://doi.org/10.21776/ub.jtsl.2023.010.2.06 [CrossRef] [Google Scholar]
- Oktavian, P., Anas, M., Kasman, Sudiana, I. N., Safaani, J., & Agusu, L. (2024). Studi Kajian Literatur: Pengaruh Keberadaan Logam Berat Terhadap Tingkat Kesuburan Tanah di Indonesia. Einstein’s: Research Journal of Applied Physics, 2(1), 20-23. https://doi.org/10.33772/einsteins.v2i1.645 [CrossRef] [Google Scholar]
- Zainudin, Z., & Kesumaningwati, R. (2022). Pengaruh Eco Enzyme Terhadap Kandungan Logam Berat Lahan Bekas Tambang Batubara. Ziraa’Ah Majalah Ilmiah Pertanian, 47(2), 154. https://doi.org/10.31602/zmip.v47i2.6551 [CrossRef] [Google Scholar]
- Hamzah, A., & Priyadarshini, R. (2023). Karakterisasi Biochar Terlapis Chitosan (Biosan) Sebagai Pembenah Tanah Tercemar Logam Berat. In Seminar Nasional Lahan Suboptimal, 11(1), 118–128. [Google Scholar]
- Ankit, Saha, L., Kumar, V., Tiwari, J., Sweta, Rawat, S., Singh, J., & Bauddh, K. (2021). Electronic waste and their leachates impact on human health and environment: Global ecological threat and management. Environmental Technology and Innovation, 24, 102049. https://doi.org/10.1016/j.eti.2021.102049 [CrossRef] [Google Scholar]
- Long, Z., Huang, Y., Zhang, W., Shi, Z., Yu, D., Chen, Y., Liu, C., & Wang, R. (2021). Effect of different industrial activities on soil heavy metal pollution, ecological risk, and health risk. Environmental Monitoring and Assessment, 193(1). https://doi.org/10.1007/s10661-020-08807-z [Google Scholar]
- Setia, R., Dhaliwal, S. S., Kumar, V., Singh, R., Kukal, S. S., & Pateriya, B. (2020). Impact assessment of metal contamination in surface water of Sutlej River (India) on human health risks. Environmental Pollution, 265, 114907. https://doi.org/10.1016/j.envpol.2020.114907 [CrossRef] [Google Scholar]
- Covre, W. P., Ramos, S. J., Pereira, W. V. da S., Souza, E. S. de, Martins, G. C., Teixeira, O. M. M., Amarante, C. B. do, Dias, Y. N., & Fernandes, A. R. (2022). Impact of copper mining wastes in the Amazon: Properties and risks to environment and human health. Journal of Hazardous Materials, 421(April), 126688. https://doi.org/10.1016/j.jhazmat.2021.126688 [CrossRef] [Google Scholar]
- Pokhrel, G. R., & Pokhre, G. (2022). Effect of Chromium on Human-Health: A Review. BMC Journal of Scientific Research, 5(1), 27-35. https://doi.org/10.3126/bmcjsr.v5i1.50669 [CrossRef] [Google Scholar]
- Aendo, P., Netvichian, R., Thiendedsakul, P., Khaodhiar, S., & Tulayakul, P. (2022). Carcinogenic Risk of Pb, Cd, Ni, and Cr and Critical Ecological Risk of Cd and Cu in Soil and Groundwater around the Municipal Solid Waste Open Dump in Central Thailand. Journal of Environmental and Public Health, 2022. https://doi.org/10.1155/2022/3062215 [Google Scholar]
- Zambelli, B., Uversky, V. N., & Ciurli, S. (2016). Nickel impact on human health: An intrinsic disorder perspective. Biochimica et Biophysica Acta - Proteins and Proteomics, 1864(12), 1714-1731. https://doi.org/10.1016/j.bbapap.2016.09.008 [CrossRef] [Google Scholar]
- Hoang, H. G., Chiang, C. F., Lin, C., Wu, C. Y., Lee, C. W., Cheruiyot, N. K., Tran, H. T., & Bui, X. T. (2021). Human health risk simulation and assessment of heavy metal contamination in a river affected by industrial activities. Environmental Pollution, 285(May), 117414. https://doi.org/10.1016/j.envpol.2021.117414 [CrossRef] [Google Scholar]
- Kafayat Kehinde Lawal, Ike Kenneth Ekeleme, Chinemerem Martin Onuigbo, Victor Okezie Ikpeazu, & Smart Obumneme Obiekezie. (2021). A review on the public health implications of heavy metals. World Journal of Advanced Research and Reviews, 10(3), 255-265. https://doi.org/10.30574/wjarr.2021.10.3.0249 [CrossRef] [Google Scholar]
- Tong, S., Li, H., Wang, L., Tudi, M., & Yang, L. (2020). Concentration, spatial distribution, contamination degree and human health risk assessment of heavy metals in urban soils across China between 2003 and 2019—a systematic review. International journal of environmental research and public health, 17(9), 3099. https://doi.org/10.3390/ijerph17093099 [CrossRef] [Google Scholar]
- Mahmoud, N., Al-Shahwani, D., Al-Thani, H., & Isaifan, R. J. (2023). Risk Assessment of the Impact of Heavy Metals in Urban Traffic Dust on Human Health. Atmosphere, 14(6). https://doi.org/10.3390/atmos14061049 [CrossRef] [Google Scholar]
- Zulfiqar, U., Haider, F. U., Ahmad, M., Hussain, S., Maqsood, M. F., Ishfaq, M., Shahzad, B., Waqas, M. M., Ali, B., Tayyab, M. N., Ahmad, S. A., Khan, I., & Eldin, S. M. (2023). Chromium toxicity, speciation, and remediation strategies in soil-plant interface: A critical review. Frontiers in Plant Science, 13(January), 1-33. https://doi.org/10.3389/fpls.2022.1081624 [CrossRef] [Google Scholar]
- Farid, M., Ali, S., Rizwan, M., Ali, Q., Abbas, F., Bukhari, S. A. H., Saeed, R., & Wu, L. (2017). Citric acid assisted phytoextraction of chromium by sunflower; morpho- physiological and biochemical alterations in plants. Ecotoxicology and Environmental Safety, 145(July), 90-102. https://doi.org/10.1016/j.ecoenv.2017.07.016 [CrossRef] [Google Scholar]
- Pattnaik, S., Dash, D., Mohapatra, S., Pattnaik, M., Marandi, A. K., Das, S., & Samantaray, D. P. (2020). Improvement of rice plant productivity by native Cr(VI) reducing and plant growth promoting soil bacteria Enterobacter cloacae. Chemosphere, 240, 124895. [CrossRef] [Google Scholar]
- Praveen, R., & Nagalakshmi, R. (2022). Review on bioremediation and phytoremediation techniques of heavy metals in contaminated soil from dump site. Materials Today: Proceedings, 68, 1562-1567. https://doi.org/10.1016/j.matpr.2022.07.190 [CrossRef] [Google Scholar]
- Wani, P. A., & Khan, M. S. (2010). Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food and Chemical Toxicology, 48(11), 3262-3267. https://doi.org/10.1016/j.fct.2010.08.035 [CrossRef] [Google Scholar]
- Ranieri, E., Fratino, U., Petrella, A., Torretta, V., & Rada, E. C. (2016). Ailanthus Altissima and Phragmites Australis for chromium removal from a contaminated soil. Environmental Science and Pollution Research, 23(16), 15983-15989. https://doi.org/10.1007/s11356-016-6804-0 [CrossRef] [PubMed] [Google Scholar]
- De Rossi, A., Rigon, M. R., Zaparoli, M., Braido, R. D., Colla, L. M., Dotto, G. L., & Piccin, J. S. (2018). Chromium (VI) biosorption by Saccharomyces cerevisiae subjected to chemical and thermal treatments. Environmental Science and Pollution Research, 25(19), 19179-19186. https://doi.org/10.1007/s11356-018-2377-4 [CrossRef] [PubMed] [Google Scholar]
- Tariq, M., Waseem, M., Rasool, M. H., Zahoor, M. A., & Hussain, I. (2019). Isolation and molecular characterization of the indigenous Staphylococcus aureus strain K1 with the ability to reduce hexavalent chromium for its application in bioremediation of metal- contaminated sites. PeerJ, 2019(10), 1-20. https://doi.org/10.7717/peerj.7726 [Google Scholar]
- Long, B., Ye, B., Liu, Q., Zhang, S., Ye, J., Zou, L., & Shi, J. (2018). Characterization of Penicillium oxalicum SL2 isolated from indoor air and its application to the removal of hexavalent chromium. PLoS ONE, 13(1), 1-16. https://doi.org/10.1371/journal.pone.0191484 [Google Scholar]
- Shah, V., & Daverey, A. (2020). Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environmental Technology and Innovation, 18, 100774. https://doi.org/10.1016/j.eti.2020.100774 [CrossRef] [Google Scholar]
- Xiao, R., Ali, A., Wang, P., Li, R., Tian, X., & Zhang, Z. (2019). Comparison of the feasibility of different washing solutions for combined soil washing and phytoremediation for the detoxification of cadmium (Cd)and zinc (Zn)in contaminated soil. Chemosphere, 230, 510-518. https://doi.org/10.1016/j.chemosphere.2019.05.121 [CrossRef] [Google Scholar]
- Hou, D. (Ed.). (2019). Sustainable remediation of contaminated soil and groundwater: materials, processes, and assessment. Butterworth-Heinemann. [Google Scholar]
- Roccotiello, E., Serrano, H. C., Mariotti, M. G., & Branquinho, C. (2015). Nickel phytoremediation potential of the Mediterranean Alyssoides utriculata (L.) Medik. Chemosphere, 119, 1372-1378. https://doi.org/10.1016/j.chemosphere.2014.02.031 [CrossRef] [Google Scholar]
- El-Naggar, A., Ahmed, N., Mosa, A., Niazi, N. K., Yousaf, B., Sharma, A., Sarkar, B., Cai, Y., & Chang, S. X. (2021). Nickel in soil and water: Sources, biogeochemistry, and remediation using biochar. Journal of Hazardous Materials, 419(April), 126421. https://doi.org/10.1016/j.jhazmat.2021.126421 [CrossRef] [Google Scholar]
- Shen, Z., Som, A. M., Wang, F., Jin, F., McMillan, O., & Al-Tabbaa, A. (2016). Longterm impact of biochar on the immobilisation of nickel (II) and zinc (II) and the revegetation of a contaminated site. Science of the Total Environment, 542, 771-776. https://doi.org/10.1016/j.scitotenv.2015.10.057 [CrossRef] [Google Scholar]
- Shaheen, S. M., Rinklebe, J., & Selim, M. H. (2015). Impact of various amendments on immobilization and phytoavailability of nickel and zinc in a contaminated floodplain soil. International Journal of Environmental Science and Technology, 12(9), 2765-2776. https://doi.org/10.1007/s13762-014-0713-x [CrossRef] [Google Scholar]
- Man, Y., Wang, B., Wang, J., Slaný, M., Yan, H., Li, P., El-Naggar, A., Shaheen, S. M., Rinklebe, J., & Feng, X. (2021). Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands. Environment International, 153. https://doi.org/10.1016/j.envint.2021.106527 [Google Scholar]
- Massoud, R., Hadiani, M. R., Hamzehlou, P., & Khosravi-Darani, K. (2019). Bioremediation of heavy metals in food industry: Application of Saccharomyces cerevisiae. Electronic Journal of Biotechnology, 37, 56-60. https://doi.org/10.1016/j.ejbt.2018.11.003 [CrossRef] [Google Scholar]
- Siddiquee, S., Rovina, K., & Azad, S. Al. (2015). Heavy Metal Contaminants Removal from Wastewater Using the Potential Filamentous Fungi Biomass: A Review. Journal of Microbial & Biochemical Technology, 07(06). https://doi.org/10.4172/1948-5948.1000243 [CrossRef] [Google Scholar]
- Zhu, X., Li, W., Zhan, L., Huang, M., Zhang, Q., & Achal, V. (2016). The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil. Environmental Pollution, 219, 149-155. https://doi.org/10.1016/j.envpol.2016.10.047 [CrossRef] [Google Scholar]
- Hussain, A., Rehman, F., Rafeeq, H., Waqas, M., Asghar, A., Afsheen, N., Rahdar, A., Bilal, M., & Iqbal, H. M. N. (2022). In-situ, Ex-situ, and nano-remediation strategies to treat polluted soil, water, and air - A review. Chemosphere, 289(December 2021), 133252. https://doi.org/10.1016/j.chemosphere.2021.133252 [CrossRef] [Google Scholar]
- Genchi, G., Carocci, A., Lauria, G., & Sinicropi, M. S. (2020). Nickel: Human Health and Environmental Toxicology. International Journal of Environmental Research and Public Health, 17(3), 679–700. [CrossRef] [Google Scholar]
- Bakshi, A., & Panigrahi, A. K. (2022). Chromium contamination in soil and its bioremediation: an overview. Advances in Bioremediation and Phytoremediation for Sustainable Soil Management: Principles, Monitoring and Remediation, 229-248. [CrossRef] [Google Scholar]
- Rashid, A., Schutte, B. J., Ulery, A., Deyholos, M. K., Sanogo, S., Lehnhoff, E. A., & Beck, L. (2023). Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy, 13(6), 1-30. https://doi.org/10.3390/agronomy13061521 [CrossRef] [Google Scholar]
- Rachmawati, S., Syafrudin, S., & Budiyono, B. (2023). Quality of paving blocks soaking water made from medical waste incineration ash. IOP Conference Series: Earth and Environmental Science, 1268(1). https://doi.org/10.1088/1755-1315/1268/1/012063 [CrossRef] [Google Scholar]
- Kolesnikov, S., Kuzina, A., Minnikova, T., Akimenko, Y., Nevedomaya, E., Ter-Micakyants, T., & Kazeev, K. (2022). Approaches to the development of environmental standards for the content of petroleum hydrocarbons and Pb, Cr, Cu, Ni in soils of Greatest Caucasus. SAINS TANAH-Journal of Soil Science and Agroclimatology, 19(2), 192-204. https://doi.org/10.20961/stjssa.v19i2.60119 [CrossRef] [Google Scholar]
- Timotiwu, P. B., Agustiansyah, A., & Muslimah, D. (2023). Effect of Iron (Fe) heavy metal content at different pH on the germination of seven soybean varieties in Indonesia. Journal of Soil Science and Agroclimatology, 20(2), 199–209. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.