Open Access
Issue |
BIO Web Conf.
Volume 155, 2025
10th-ICCC – 10th International Conference on Climate Change “Climate Change, Plant and Health”
|
|
---|---|---|
Article Number | 10001 | |
Number of page(s) | 16 | |
Section | Climate Change Impact on Health and Adaptation/Mitigation Strategy | |
DOI | https://doi.org/10.1051/bioconf/202515510001 | |
Published online | 29 January 2025 |
- M. Dalamaga, D. Kounatidis, D. Tsilingiris, N. G. Vallianou, I. Karampela, S. Psallida, and A. G. Papavassiliou, The Role of Endocrine Disruptors Bisphenols and Phthalates in Obesity: Current Evidence, Perspectives and Controversies, International Journal of Molecular Sciences, 25, 675, (2024) https://doi.org/10.3390/ijms25010675 [CrossRef] [PubMed] [Google Scholar]
- N. Ben Messaoud, M. E. Ghica, C. Dridi, M. Ben Ali, and C. M. A. Brett, Electrochemical sensor based on multiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A., Sensors and Actuators B: Chemical, 253, 513 (2017). https://doi.org/10.1016/j.snb.2017.06.160. [CrossRef] [Google Scholar]
- M. F. Manzoor et al., An Insight into Bisphenol A., Food Exposure and Its Adverse Effects on Health: A Review, Frontiers in Nutrition, 9, 1047827, (2022). https://doi.org/10.3389/fnut.2022.1047827 [CrossRef] [PubMed] [Google Scholar]
- O. Adamovsky et al., Exploring BPA Alternatives - Environmental Levels and Toxicity Review, Environment International, 189, 108728, (2024). https://doi.org/10.1016/j.envint.2024.108728 [CrossRef] [PubMed] [Google Scholar]
- T. Ingwani, N. Chaukura, B. B. Mamba, T. T. I. Nkambule, and A. M. Gilmore, Detection and Quantification of Bisphenol A in Surface Water Using Absorbance- Transmittance and Fluorescence Excitation-Emission Matrices (A-TEEM) Coupled with Multiway Techniques, Molecules 28, (2023). https://doi.org/10.3390/molecules28207048. [CrossRef] [PubMed] [Google Scholar]
- P. C. A. Kumar, R. S. A. Priyanka, P. S. Priya, B. Gunasree, S. Srivanth, S. Jayasakthi, A. Kapoor, and R. MuthuKumar, Bisphenol A contamination in processed food samples: an overview, International Journal of Environmental Science and Technology, 20, 13975 (2023). https://doi.org/10.1016/j.hazadv.2022.100205. [CrossRef] [Google Scholar]
- P. P. Hao, Determination of bisphenol A in barreled drinking water by a SPE-LC-MS method, Journal of Environmental Science and Health, Part A. 55, 697 (2020). https://doi.org/10.1080/10934529.2020.1732764. [CrossRef] [PubMed] [Google Scholar]
- A. Rostamzadeh, M. Nemati, M. A. Farajzadeh, M. Reza, and A. Mogaddam, Determination of Bisphenol A in Packed Milk and Mineral Water Samples Marketed in Tabriz (Iran) in 2020 Using High-Performance Liquid Chromatography-Ultraviolet Detector, Analytical and Bioanalytical Chemistry Research, 8, 4, 515-523, (2021). https://doi.org/10.22036/abcr.2021.262027.1568. [Google Scholar]
- A. Moradi Hasan-Abad, M. Ali Esmaili, M. Akbari, A. Mohammad Sorouri, L. Hosseinzadeh, and A. Sobhaninasab, Voltammetric Electrochemical Sensor for Rapid and Convenient Morphine Detection: A Review, Analytical & Bioanalytical Electrochemistry. 14,1152-1169, (2022). [Google Scholar]
- F. Mo, J. Xie, T. Wu, M. Liu, Y. Zhang, and S. Yao, A sensitive electrochemical sensor for bisphenol A on the basis of the AuPd incorporated carboxylic multi-walled carbon nanotubes, Food Chemistry 292, 253 (2019). https://doi.org/10.1016/j.foodchem.2019.04.034. [CrossRef] [PubMed] [Google Scholar]
- S. Wu, Q. He, C. Tan, Y. Wang, and H. Zhang, Graphene-Based Electrochemical Sensors, Small. Electrochemical Sensors, 9, 1160-1172, (2008). https://doi.org/10.1002/smll.201202896. [Google Scholar]
- B. Deiminiat, G. H. Rounaghi, M. H. Arbab-Zavar, and I. Razavipanah, A novel electrochemical aptasensor based on f-MWCNTs/AuNPs nanocomposite for label- free detection of bisphenol A., Sensor Actuators B: Chemical, 242, 158 (2017). https://doi.org/10.1016/j.snb.2016.11.041. [CrossRef] [Google Scholar]
- H. K. Seo, T. S. Kim, C. Park, W. Xu, K. Baek, S. H. Bae, J. H. Ahn, K. Kim, H. C. Choi, and T. W. Lee, Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices, Scientific Reports, 5, (2015). https://doi.org/10.1038/srep16710. [Google Scholar]
- I.-M. Low, H. M. Albetran, and M. Degiorgio, Structural Characterization of Commercial Graphite and Graphene Materials, Journal of Nanotechnology and Nanomaterials. 1, 23-30 (2020). https://doi.org/10.33696/Nanotechnol.1.005 [Google Scholar]
- Z. Ni, Y. Wang, T. Yu, and Z. Shen, Raman spectroscopy and imaging of graphene, Nano Research, 1, 273 (2008). [CrossRef] [Google Scholar]
- W. Guoxiu, Y. Juan, P. Jinsoo, G. Xinglong, W. Bei, L. Hao, and Y. Jane, Facile synthesis and characterization of graphene nanosheets, Journal of Physical Chemistry C 112, 8192 (2008). [CrossRef] [Google Scholar]
- G. Yang, L. Li, W. B. Lee, and M. C. Ng, Structure of Graphene and Its Disorders: A Review, Science and Technology of Advanced Materials. Science and Technology of Advanced Materials, 19, 613-648 (2020). https://doi.org/10.1080/14686996.2018.1494493. [CrossRef] [PubMed] [Google Scholar]
- H. Hong, F. Part, and B. Nowack, Prospective Dynamic and Probabilistic Material Flow Analysis of Graphene-Based Materials in Europe from 2004 to 2030, Environmental Science and Technology, 56, 13798 (2022). [CrossRef] [PubMed] [Google Scholar]
- F. Tavakoli, M. Salavati-Niasari, A. Badiei, and F. Mohandes, Green synthesis and characterization of graphene nanosheets, Materials Research Bulletin, 63, 51 (2015). [CrossRef] [Google Scholar]
- R. Siburian, H. Sihotang, S. Lumban Raja, M. Supeno, and C. Simanjuntak, New route to synthesize of graphene nano sheets, Oriental Journal of Chemistry 34, 182 (2018). [CrossRef] [Google Scholar]
- H. A. Rahman, B. R. Putra, M. Rafi, R. Heryanto, C. Takai-Yamashita, Y. Ohya, and W. T. Wahyuni, Highly Sensitive Amperometric Hydrazine Sensor Developed from Gold Nanoparticles Electrodeposited on Glassy Carbon Electrode Modified with Graphene Oxide and Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) Composite, Sensors and Materials, 35, 4177 (2023). [CrossRef] [Google Scholar]
- Y. Wang, C. Yin, and Q. Zhuang, An electrochemical sensor modified with nickel nanoparticle/nitrogen-doped carbon nanosheet nanocomposite for bisphenol A detection, Journal of Alloys and Compounds, 827, (2020). [Google Scholar]
- B. Ntsendwana, B. B. Mamba, S. Sampath, and O. A. Arotiba, Electrochemical Detection of Bisphenol A Using Graphene-Modified Glassy Carbon Electrode, International Journal of Electrochemical Science, 7, (2012). https://doi.org//10.1016/S1452-3981(23)13972-1. [Google Scholar]
- D. Jemmeli, E. Marcoccio, D. Moscone, C. Dridi, and F. Arduini, Highly sensitive paper-based electrochemical sensor for reagent free detection of bisphenol A., Talanta 216, (2020). [Google Scholar]
- Z. Zhu, X. Miao, and D. Yan, An Electrochemical Sensor Based on Bimetallic PtPd Nanoparticles for the Determination of Bisphenol A., International Journal of Electrochemical Science, 16, 1 (2021). [Google Scholar]
- M. Hatip, S. Koçak, and Z. Dursun, Sensitive determination of hydrazine using poly(phenolphthalein), Au nanoparticles and multiwalled carbon nanotubes modified glassy carbon electrode, Turkish Journal of Chemistry, 45, 167 (2021). [CrossRef] [PubMed] [Google Scholar]
- A. C. Lazanas and M. I. Prodromidis, Electrochemical Impedance Spectroscopy─A Tutorial, ACS Measurement Science Au. 3, 162-193 (2023) https://doi.org/10.1021/acsmeasuresciau.2c00070. [CrossRef] [Google Scholar]
- S. A. H. Ta’alia, E. Rohaeti, B. R. Putra, and W. T. Wahyuni, Electrochemical sensors for simultaneous detection of dopamine and uric acid based on a composite of electrochemically reduced graphene oxide and PEDOT:PSS-modified glassy carbon electrode, Results in Chemistry, 6, 101024 (2023). [CrossRef] [Google Scholar]
- D. Kim, S. Lee, and Y. Piao, Electrochemical determination of dopamine and acetaminophen using activated graphene-Nafion modified glassy carbon electrode, Journal of Electroanalytical Chemistry 794, 221 (2017). [CrossRef] [Google Scholar]
- S. Rodsud and W. Limbut, A Simple Electrochemical Sensor Based on Graphene Nanoplatelets Modified Glassy Carbon Electrode (GrNPs/GCE) for Highly Sensitive Detection of Yohimbine (YOH), Journal of The Electrochemical Society, 166, B771 (2019). [CrossRef] [Google Scholar]
- H. Ali, S. Mukhopadhyay, and N. R. Jana, Selective electrochemical detection of bisphenol A using a molecularly imprinted polymer nanocomposite, New Journal of Chemistry 43, 1536 (2019). [CrossRef] [Google Scholar]
- R. Wannapob, P. Thavarungkul, S. Dawan, A. Numnuam, W. Limbut, and P. Kanatharana, A Simple and Highly Stable Porous Gold-based Electrochemical Sensor for Bisphenol A Detection, Electroanalysis 29, 472 (2017). [CrossRef] [Google Scholar]
- A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, 2nd ed., New York, (2001). [Google Scholar]
- X. Tu, L. Yan, X. Luo, S. Luo, and Q. Xie, Electroanalysis of bisphenol a at a multiwalled carbon nanotubes-gold nanoparticles modified glassy carbon electrode, Electroanalysis, 21, 2491 (2009). [CrossRef] [Google Scholar]
- H. Yin, L. Cui, Q. Chen, W. Shi, S. Ai, L. Zhu, and L. Lu, Amperometric determination of bisphenol A in milk using PAMAM-Fe3O4 modified glassy carbon electrode, Food Chemistry, 125, 1097 (2011). [CrossRef] [Google Scholar]
- R. Shi, J. Liang, Z. Zhao, A. Liu, and Y. Tian, An electrochemical bisphenol A sensor based on one step electrochemical reduction of cuprous oxide wrapped graphene oxide nanoparticles modified electrode, Talanta, 169, 37 (2017). [CrossRef] [PubMed] [Google Scholar]
- C. Tian, D. Chen, N. Lu, Y. Li, R. Cui, Z. Han, and G. Zhang, Electrochemical bisphenol A sensor based on nanoporous PtFe alloy and graphene modified glassy carbon electrode, Journal of Electroanalytical Chemistry, 27 (2018). [Google Scholar]
- J. Zou, G. Q. Zhao, J. Teng, Q. Liu, X. Y. Jiang, F. P. Jiao, and J. G. Yu, Highly sensitive detection of bisphenol A in real water samples based on in-situ assembled graphene nanoplatelets and gold nanoparticles composite, Microchemical Journal, 145, 693 (2019). [CrossRef] [Google Scholar]
- G. Zhu, Q. Tang, J. Dou, X. Li, J. Yang, R. Xu, and J. Liu, Partially Reduced Graphene Oxide Sheet-Covered Polyaniline Nanotubes for the Simultaneous Determination of Bisphenol A and Phenol, Journal of The Electrochemical Society, 166, B1661 (2019). [CrossRef] [Google Scholar]
- N. T. Lien, L. Quoc Hung, N. T. Hoang, V. T. Thu, D. T. Ngoc Nga, P. T. Hai Yen, P. H. Phong, and V. T. Thu Ha, An Electrochemical Sensor Based on Gold Nanodendrite/Surfactant Modified Electrode for Bisphenol A Detection, Journal of Analytical Methods in Chemistry, 2020, 6693595 (2020). https://doi.org/10.1155/2020/6693595 [PubMed] [Google Scholar]
- M. B. Nguyen, N. H. Anh, V. Thi Thu, P. Thi Hai Yen, P. Hong Phong, L. Quoc Hung, N. T. T. Ngan, T. Q. Hai, and V. Thi Thu Ha, A novel bimetallic MOFs combined with gold nanoflakes in electrochemical sensor for measuring bisphenol A., RSC Advances, 12, 33825 (2022). [CrossRef] [PubMed] [Google Scholar]
- J. Rajendran, T. S. Kannan, L. S. Dhanasekaran, P. Murugan, R. Atchudan, Z. A. Alothman, M. Ouladsmane, and A. K. Sundramoorthy, Preparation of 2D Graphene/MXene nanocomposite for the electrochemical determination of hazardous bisphenol A in plastic products, Chemosphere 287, (2022). [Google Scholar]
- F. Beigmoradi and H. Beitollahi, Fe3O4/GO nanocomposite modified glassy carbon electrode as a novel voltammetric sensor for determination of bisphenol A., Journal of Electrochemical Science and Engineering, 12, 1205 (2022). [Google Scholar]
- D. Verma, A. K. Yadav, M. Das Mukherjee, and P. R. Solanki, Fabrication of a sensitive electrochemical sensor platform using reduced graphene oxide-molybdenum trioxide nanocomposite for BPA detection: An endocrine disruptor, Journal of Environmental Chemical Engineering, 9, (2021). [Google Scholar]
- A. L. T. Zheng and Y. Andou, Detection and Remediation of Bisphenol A (BPA) Using Graphene-Based Materials: Mini-Review, International Journal of Environmental Science and TechnologyInternational Journal of Environmental Science and Technology, 1, 20 (2021). https://doi.org/10.1007/s13762-021-03512-x. [Google Scholar]
- P. E. Jackson, Determination of Inorganic Ions in Drinking Water by Ion Chromatography, TrAC Trends in Analytical Chemistry, 20, 320-329 (2001). https://doi.org/10.1016/S0165-9936(01)00070-X. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.