Open Access
Issue |
BIO Web Conf.
Volume 157, 2025
The 5th Sustainability and Resilience of Coastal Management (SRCM 2024)
|
|
---|---|---|
Article Number | 09001 | |
Number of page(s) | 15 | |
Section | Sustainable Construction | |
DOI | https://doi.org/10.1051/bioconf/202515709001 | |
Published online | 05 February 2025 |
- C. I. Elliff and I. R. Silva, “Coral reefs as the first line of defense: Shoreline protection in face of climate change,” 2017, Elsevier Ltd. doi: 10.1016/j.marenvres.2017.03.007. [Google Scholar]
- S. M. Cheong, B. Silliman, P. P. Wong, B. Van Wesenbeeck, C. K. Kim, and G. Guannel, “Coastal adaptation with ecological engineering,” Nat Clim Chang, vol. 3, no. 9, pp. 787–791, Sep. 2013, doi: 10.1038/nclimate1854. [CrossRef] [Google Scholar]
- L. Burke, M. D. Spalding, and A. Perry, “Reefs at Risk Revisited,” 2011. [Online]. Available: https://www.researchgate.net/publication/263705424 [Google Scholar]
- I. I. Na’Im, A. R. M. Shahrizal, and M. D. Safari, “A Short Review of Submerged Breakwaters,” in MATEC Web of Conferences, EDP Sciences, Sep. 2018. doi: 10.1051/matecconf/201820301005. [CrossRef] [EDP Sciences] [Google Scholar]
- H. Dwito Armono, H. D. Armono A, and K. B. Hall, “Wave transmission on submerged breakwaters made of hollow hemispherical shape artificial reefs,” 2003. [Online]. Available: https://www.researchgate.net/publication/251314569 [Google Scholar]
- K. G. Shirlal, S. Rao, V. Ganesh, and Manu, “Stability of breakwater defenced by a seaward submerged reef,” Ocean Engineering, vol. 33, no. 5–6, pp. 829–846, Apr. 2006, doi: 10.1016/j.oceaneng.2004.11.017. [CrossRef] [Google Scholar]
- C. Srisuwan and P. Rattanamanee, “Modeling of Seadome as artificial reefs for coastal wave attenuation,” Ocean Engineering, vol. 103, pp. 198–210, May 2015, doi: 10.1016/j.oceaneng.2015.04.069. [CrossRef] [Google Scholar]
- W. Seaman, K. Tsukamoto, T. Kawamura, T. Takeuchi, T. D. Beard, and M. J. Kaiser, “Fisheries for Global Welfare and Environment, 5th World Fisheries Congress,”2008.[Online].Available:https://www.researchgate.net/publication/2284 06611 [Google Scholar]
- Y. Belhassen, M. Rousseau, J. Tynyakov, and N. Shashar, “Evaluating the attractiveness and effectiveness of artificial coral reefs as a recreational ecosystem service,” J Environ Manage, vol. 203, pp. 448–456, Dec. 2017, doi: 10.1016/j.jenvman.2017.08.020. [CrossRef] [PubMed] [Google Scholar]
- M. A. A. Rahman et al., “A fundamental cfd investigation of offshore structures for artificial coral reef development,” CFD Letters, vol. 12, no. 7, pp. 110–125, Jan. 2020, doi: 10.37934/cfdl.12.7.110125. [CrossRef] [Google Scholar]
- S. G. Monismith, L. M. M. Herdman, S. Ahmerkamp, and J. L. Hench, “Wave transformation and wave-driven flow across a steep coral reef,” J Phys Oceanogr, vol. 43, no. 7, pp. 1356–1379, 2013, doi: 10.1175/JPO-D-12-0164.1. [CrossRef] [Google Scholar]
- T. S. Hedges, “Regions of validity of analytical wave theories,” Proceedings of the Institution of Civil Engineers: Water, Maritime and Energy, vol. 112, no. 2, pp. 111–114, 1995, doi: 10.1680/iwtme.1995.27656. [CrossRef] [Google Scholar]
- D. S. Hur, K. H. Lee, and D. S. Choi, “Effect of the slope gradient of submerged breakwaters on wave energy dissipation,” Engineering Applications of Computational Fluid Mechanics, vol. 5, no. 1, pp. 83–98, 2011, doi: 10.1080/19942060.2011.11015354. [CrossRef] [Google Scholar]
- M. Buccino, I. Del Vita, and M. Calabrese, “Engineering Modeling of Wave Transmission of Reef Balls,” J Waterw Port Coast Ocean Eng, vol. 140, no. 4, Jul. 2014, doi: 10.1061/(asce)ww.1943-5460.0000237. [CrossRef] [Google Scholar]
- R. L. Sherman, D. S. Gilliam, and R. E. Spieler, “Artificial reef design: Void space, complexity, and attractants,” in ICES Journal of Marine Science, Academic Press, 2002. doi: 10.1006/jmsc.2001.1163. [Google Scholar]
- D. H. Yun and Y. T. Kim, “Experimental study on settlement and scour characteristics of artificial reef with different reinforcement type and soil type,” Geotextiles and Geomembranes, vol. 46, no. 4, pp. 448–454, Aug. 2018, doi: 10.1016/j.geotexmem.2018.04.005. [CrossRef] [Google Scholar]
- M. A. A. Rahman, J. Leggoe, K. Thiagarajan, M. H. Mohd, and J. K. Paik, “Numerical simulations of vortex-induced vibrations on vertical cylindrical structure with different aspect ratios,” Ships and Offshore Structures, vol. 11, no. 4, pp. 405–423, May 2016, doi: 10.1080/17445302.2015.1013783. [CrossRef] [Google Scholar]
- B. S. Baldwin, T. J. Barth, and C. Branch, “A One-Equation Turbulence Transport Model for High Reynolds Number Wall-Bounded Flows.” [Google Scholar]
- A. Crivellini and V. D’Alessandro, “Spalart-Allmaras model apparent transition and RANS simulations of laminar separation bubbles on airfoils,” Int J Heat Fluid Flow, vol. 47, pp. 70–83, 2014, doi: 10.1016/j.ijheatfluidflow.2014.03.002. [CrossRef] [Google Scholar]
- R. Ramponi and B. Blocken, “CFD simulation of cross-ventilation flow for different isolated building configurations: Validation with wind tunnel measurements and analysis of physical and numerical diffusion effects,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 104–106, pp. 408–418, 2012, doi: 10.1016/j.jweia.2012.02.005. [CrossRef] [Google Scholar]
- S. N. Ashwindran, A. A. Azizuddin, and A. N. Oumer, “A moment coefficient computational study of parametric drag-driven wind turbine at moderate tip speed ratios,” Australian Journal of Mechanical Engineering, vol. 20, no. 2, pp. 433–447, 2022, doi: 10.1080/14484846.2020.1714364. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.