Open Access
Issue |
BIO Web Conf.
Volume 157, 2025
The 5th Sustainability and Resilience of Coastal Management (SRCM 2024)
|
|
---|---|---|
Article Number | 11002 | |
Number of page(s) | 13 | |
Section | Climate Change Adaptation and Mitigation | |
DOI | https://doi.org/10.1051/bioconf/202515711002 | |
Published online | 05 February 2025 |
- W. Shafqat, S.A. Naqvi, R. Maqbool, M.S. Haider, M.J. Jaskani and I.A. Khan, Climate Change and Citrus (IntechOpen, Rijeka, 2021) [Google Scholar]
- Bappenas, SDGs Knowledge Hub: Agenda 2030 untuk Pembangunan Berkelanjutan. https://sdgs.bappenas.go.id/ (2023) [Google Scholar]
- BNPB, inaRISK: Buku Risiko Bencana Indonesia. https://inarisk.bnpb.go.id/BUKU-RBI-2022/mobile/index.html#p=44 (2022) [Google Scholar]
- T.A. Azzahra, Curah Hujan Tinggi, 66 RT di Jakarta dilanda Banjir selama 3-4 hari. https://news.detik.com/berita/d-7279677/curah-hujan-tinggi-66-rt-di-jakarta-dilanda-banjir-selama-3-4-april (2024) [Google Scholar]
- S. Saragih, BPBD DKI: Banjir di Jakarta Dampak Hujan Ekstrem. https://www.metrotvnews.com/read/kpLCWaJ6-bpbd-dki-banjir-di-jakarta-dampak-hujan-ekstrem (2024) [Google Scholar]
- S. Dahlia and Fadiarman, Analisis Risiko Banjir Terhadap Fasilitas Pendidikan di DKI Jakarta. J. Geo. Gea, 20(2), 185-196 (2020) https://doi.org/10.17509/gea.v20i2.24113 [Google Scholar]
- A. Ahdiat, Jumlah Wilayah Rukun Warga (RW) yang Terdampak Banjir di DKI Jakarta (2018-2022).https://databoks.katadata.co.id/datapublish/2023/02/27/riwayat-banjir-jakarta-5-tahun-terakhir-membaik-atau-memburuk (2023) [Google Scholar]
- J.S.I. Hanugraheni and N. Iriawan, Pemodelan Bayesian Hirarki Data Curah Hujan Ekstrem di Jakarta. J. Sains dan Seni ITS 5(1), 2337-3520. (2016) https://doi.org/10.12962/j23373520.v5i1.1437 [Google Scholar]
- Kiki and S. Wirahma, Analisis Hujan Lebat Tanggal 27 September 2017 di DKI Jakarta. J. Sains & Teknologi Mod. Cuaca, 18(2), 51 – 59. (2017) [CrossRef] [Google Scholar]
- M. Jannah, J. Sujono and A.P. Rahardjo, Kajian Perubahan Iklim di DKI Jakarta berdasarkan data curah hujan. Teknisia, 28(1), 043-054. (2023) https://doi.org/10.20885/teknisia.vol28.iss1.art5 [Google Scholar]
- Stephanie, O.N. Jimawan and D. Jayadi, Analisis Statistika Pengaruh Curah Hujan Terhadap Banjir di Jakarta Melalui Pemodelan Matematika. J. Met. Klimatologi dan Geofisika, 5(2), 22-18. (2018) [Google Scholar]
- A.A. Damanik, I.P. Santikayasa and M. Taufik, Evaluasi Indeks Curah Hujan pada Kondisi Banjir di Wilayah Jakarta-Indonesia. (IPB University Scientific Repository, Bogor, 2020) [Google Scholar]
- M.F. Pratama and R. Boer, Kejadian Curah Hujan Ekstrem dan Dampaknya terhadap Masyarakat (Studi Kasus: Kelurahan Cilandak Timur dan Kelurahan Jatinegara, DKI Jakarta). (IPB University Scientific Repository, Bogor, 2024) [Google Scholar]
- A. Lang and B. Poschlod, Updating catastrophe models to today’s climate – An application of a large ensemble approach to extreme rainfall. Climate Risk Management (44) 100594. (2024) https://doi.org/10.1016/j.crm.2024.100594 [CrossRef] [Google Scholar]
- P. Rivoire, P. Le Gall, A.C. Favre, P. Naveau and O. Martius, High return level estimates of daily ERA-5 precipitation in Europe estimated using regionalized extreme value distributions. Weather and Climate Extremes, 38, 100500. (2022) https://doi.org/10.1016/j.wace.2022.100500 [CrossRef] [Google Scholar]
- E. Afuecheta and M. H. Omar, Characterization of variability and trends in daily precipitation and temperature extremes in the Horn of Africa. Climate Risk Management, 32, 100295. (2021) https://doi.org/10.1016/j.crm.2021.100295 [CrossRef] [Google Scholar]
- B. Moccia, C. Mineo, E. Ridolfi, F. Russo and F. Napolitano, Probability distributions of daily rainfall extremes in Lazio and Sicily, Italy, and design rainfall inferences. J. of Hydro.: Reg. Studies, 33, 100771. (2021) https://doi.org/10.1016/j.ejrh.2020.100771 [Google Scholar]
- M.G. Sanderson, M. Teixeira, N. Fontes, S. Silva and A. Graça, The probability of unprecedented high rainfall in wine regions of northern Portugal. Climate Services, 30, 100363. (2023) https://doi.org/10.1016/j.cliser.2023.100363 [CrossRef] [Google Scholar]
- Y. Shin and J.S. Park, Modeling climate extremes using the four-parameter kappa distribution for R-largest order statistics. Weather and Climate Extremes, 39, 100533. (2023) https://doi.org/10.1016/j.wace.2022.100533 [CrossRef] [Google Scholar]
- S. Coles, An introduction to statistical modeling of extreme values. Technometrics, 44(4), 397. (Springer, 2001) [Google Scholar]
- Y. Karimah, A.H. Wigena and A.M. Soleh, Penentuan Nilai Ambang Batas Sebaran Pareto Terampat Dengan Measure of Surprise. Indonesian Journal of Statistics and Its Applications, 3(2), 161–168. (2019) https://doi.org/10.29244/ijsa.v3i2.284 [CrossRef] [Google Scholar]
- F. Mazas and L. Hamm, A multi-distribution approach to POT methods for determining extreme wave heights. Coastal Engineering, 58(5), 385–394. (2011) https://doi.org/10.1016/j.coastaleng.2010.12.003 [CrossRef] [Google Scholar]
- G. Liu, Z. Gao, B. Chen, H. Fu, S. Jiang, L. Wang and Y. Kou, Study on Threshold Selection Methods in Calculation of Ocean Environmental Design Parameters. IEEE Access, 7, 39515-39527. (2019) https://doi.org/10.1109/ACCESS.2019.2906935 [CrossRef] [Google Scholar]
- P.P. Oktaviana and Irhamah, Kolmogorov-Smirnov Goodness-of-Fit test for identifying distribution of the number of earthquakes and the losses due to earthquakes in Indonesia. J. Phys.: Conf. Ser., 1821, 012045. (2020) https://doi.org/10.1088/1742-6596/1821/1/012045 [Google Scholar]
- S. Kim and H. Kim, A new metric of absolute percentage error for intermittent demand forecasts. Int. Journal of Forecasting, 32(3), 669-679. (2016) https://doi.org/10.1016/j.ijforecast.2015.12.003 [CrossRef] [Google Scholar]
- A.D.W. Sumari, M.B. Musthafa, Ngatmari and D.R.H. Putra, Comparative Performance of Prediction Methods for Digital Wallet Transactions in the Pandemic. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(4), 642–647. (2020) https://doi.org/10.29207/resti.v4i4.2024 [CrossRef] [Google Scholar]
- H. Kim, J.H. Lee, H.J. Park and J.H. Heo, Assessment of temporal probability for rainfall-induced landslides based on nonstationary extreme value analysis. Engineering Geology, 294, 106372. (2021) https://doi.org/10.1016/j.enggeo.2021.106372 [CrossRef] [Google Scholar]
- WMO, WMO Guidelines on the Calculation of Climate Normals. (WMO, Geneva, 2017) [Google Scholar]
- IPCC, Synthesis Report of the Sixth Assessment Report: A Report of the Intergovernmental Panel on Climate Change. (2023) https://www.ipcc.ch/ar6-syr/ [Google Scholar]
- Karyati, M. Syafrudin, R. Mulyadi and S. Sarminah. Panduan Praktikum Agroklimatologi. (Fakultas Kehutanan, Universitas Mulawarman Samarinda, 2022) [Google Scholar]
- P.J. Wahab, Sutikno and A. Sopaheluwakan, Homogenisasi Data Unsur Iklim Sebagai Tahap Pra-Pemrosesan Kajian Perubahan Iklim dengan Metode Acmant dan Climatol. (Jurusan Statistika, Institut Teknologi Sepuluh Nopember, Surabaya, 2016). [Google Scholar]
- S. Van Buuren & K. Groothuis-Oudshoorn, mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3), 1–67. (2011) https://doi.org/10.18637/jss.v045.i03 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.