Open Access
Issue |
BIO Web Conf.
Volume 159, 2025
10th International Conference on Sustainable Agriculture, Food, and Energy (SAFE 2024)
|
|
---|---|---|
Article Number | 04002 | |
Number of page(s) | 7 | |
Section | Sustainable Development Goals (SDGs) | |
DOI | https://doi.org/10.1051/bioconf/202515904002 | |
Published online | 05 February 2025 |
- Paul, S., Sharif, H. & Crawford, A. (2018). Fatalities Caused by Hydrometeorological Disasters in Texas, Geosciences. 8(5): 1-22. https://doi.org/10.3390/geosciences8050186. [Google Scholar]
- Konecky, B.L., Russell, J.M., Rodysill, J.R., Vuille, M., Bijaksana, S. & Huang, Y. (2013). Intensification of southwestern Indonesian rainfall over the past millennium, Geophysical Research Letters. 40: 386–391. https://doi.org/10.1029/2012GL054331. [CrossRef] [Google Scholar]
- Kusmiyarti, T.B., Wiguna, P.P.K. and N.K.R. Ratna Dewi. (2018). Flood Risk Analysis in Denpasar City, Bali, Indonesia, IOP Conf. Series: Earth and Environmental Science. 123: 1-12. https://doi.org/10.1088/1755-1315/123/1/012012. [Google Scholar]
- Chowdhury M. S. (2023). Modelling hydrological factors from DEM using GIS, MethodsX. 10: 1-11. https://doi.org/10.1016/j.mex.2023.102062. [CrossRef] [PubMed] [Google Scholar]
- Sørensen, R., Zinko, U. & Seibert, Jan. (2006). On the Calculation of the Topographic Wetness Index: Evaluation of Different Methods Based on Field Observations. Hydrology and Earth System Sciences, 10(4): 101-112. https://doi.org/10.5194/hess-10-101-2006. [CrossRef] [Google Scholar]
- Kopecký M., Macek M. & Wild J. (2021) Topographic Wetness Index calculation guidelines based onmeasured soil moisture and plant species composition. Science of the Total Environment. 757: 143785. https://doi.org/10.1016/j.scitotenv.2020.143785. [CrossRef] [Google Scholar]
- Qin, C. Z., Zhu, A. X., Pei, T., Li, B. L., Scholten, T., Behrens, T., et al. (2011). An approach to computing topographic wetness index based on maximum downslope gradient, Precision Agriculture. 12(1): 32–43. https://doi.org/10.1007/s11119-009-9152-y. [CrossRef] [Google Scholar]
- Pourali, S., Arrowsmith, C., Chrisman, N.R., Matkan, A. & Mitchell, D.P. (2016). Topography Wetness Index Application in Flood-Risk-Based Land Use Planning, Applied Spatial Analysis and Policy. https://doi.org/9.10.1007/s12061-014-9130-2. [Google Scholar]
- Fitra, J., Debataraja, S.M.T. & Lismawaty. (2024). Identification of flood vulnerability using the topographic wetness index method in Pantai Labu Baru village, Deli Serdang, North Sumatera, E3S Web Conf. 483: 1-17. https://doi.org/10.1051/e3sconf/202448301014. [CrossRef] [EDP Sciences] [Google Scholar]
- Sahid S. (2024). Enhancing Digital Elevation Model Accuracy for Flood Modelling – A Case Study of the Ciberes River in Cirebon Indonesia, Forum Geografi. 38(1): 40-56. https://doi.org/10.23917/forgeo.v38i1.1839. [CrossRef] [Google Scholar]
- Taherizadeh, M., Niknam, A., Nguyen-Huy, T. et al. (2023). Flash flood-risk areas zoning using integration of decision-making trial and evaluation laboratory, GIS-based analytic network process and satellite-derived information. Nat Hazards, 118: 2309–2335. https://doi.org/10.1007/s11069-023-06089-5 [CrossRef] [Google Scholar]
- Aksoy, H., & Kirca, V.S.O., & Burgan, H.I. & Kellecioğlu, D. (2016). Hydrological and hydraulic models for determination of flood-prone and flood inundation areas, Proceedings of the International Association of Hydrological Sciences. 373: 137-141. https://doi.org/10.5194/piahs-373-137-2016. [CrossRef] [Google Scholar]
- Latue, P.C. (2023). Spatial Analysis of Flood Prone Areas in Fena Leisela Subdistrict, Buru Regency, Journal of Innovation Information Technology and Application (JINITA). 5(1): 65 –73. https://doi.org/10.35970/jinita.v5i1.1865. [CrossRef] [Google Scholar]
- Das, S., (2020). Koyna-Warna shallow seismic region, India: Is there any geomorphic expressionof active tectonics?, J. Geol. Soc. India, 96 (3), 217-231 [CrossRef] [Google Scholar]
- Horn, C., Potter, R. & Peternell, M. (2023). Water Flows and Water Accumulations on Bedrock as a Structuring Element of Rock Art. J Archaeol Method Theory 30, 828–854. https://doi.org/10.1007/s10816-022-09578-2 [CrossRef] [Google Scholar]
- Grabowski, D., Laskowicz, I., Małka, A. & Rubinkiewicz, J. (2022). Geoenvironmental conditioning of landsliding in river valleys of lowland regions and its significance in landslide susceptibility assessment: A case study in the Lower Vistula Valley, Northern Poland, Geomorphology, 419, 1-24. https://doi.org/10.1016/j.geomorph.2022.108490. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.