Open Access
Issue |
BIO Web Conf.
Volume 159, 2025
10th International Conference on Sustainable Agriculture, Food, and Energy (SAFE 2024)
|
|
---|---|---|
Article Number | 04005 | |
Number of page(s) | 8 | |
Section | Sustainable Development Goals (SDGs) | |
DOI | https://doi.org/10.1051/bioconf/202515904005 | |
Published online | 05 February 2025 |
- S. Y. Janjua, P. K. Sarker, and W. K. Biswas. Sustainability assessment of a residential building using a life cycle assessment approach. Chem. Eng. Trans., vol. 72, no. September 2018, pp. 19–24, (2019) doi: https://doi.org/10.3303/CET1972004 [Google Scholar]
- T. J. Wen, H. C. Siong, and Z. Z. Noor. Assessment of embodied energy and global warming potential of building construction using life cycle analysis approach: Case studies of residential buildings in Iskandar Malaysia. Energy Build., vol. 93, pp. 295–302, (2015) doi: https://doi.org/10.1016/j.enbuild.2014.12.002 [CrossRef] [Google Scholar]
- P. Y. Lim et al. Carbon Footprint of Construction using Industrialised Building System. IOP Conf. Ser. Mater. Sci. Eng., vol. 271, no. 1, pp. 0–8, (2017) doi: https://doi.org/10.1088/1757- 899X/271/1/012107 [Google Scholar]
- R. E. López-Guerrero, S. Vera, and M. Carpio. A quantitative and qualitative evaluation of the sustainability of industrialised building systems: A bibliographic review and analysis of case studies. Renew. Sustain. Energy Rev., vol. 157, no. July 2021, (2022) doi: https://doi.org/10.1016/j.rser.2021.112034 [Google Scholar]
- M. A. O. Mydin, N. Sani, and M. Taib. Industrialised Building System in Malaysia : A Review 2 Industrialised Building System History In Malaysia. vol. 01002, pp. 1–9, (2014). [Google Scholar]
- A. H. M. H. Al-Aidrous, Y. Rahmawati, K. Wan Yusof, A. Omar Baarimah, and A. M. Alawag. Review of Industrialized Buildings Experience in Malaysia: An Example of a Developing Country. IOP Conf. Ser. Earth Environ. Sci., vol. 682, no. 1, pp. 0–8, 2021, doi: https://doi.org/10.1088/1755-1315/682/1/012003 [Google Scholar]
- T. J. Wen. Life Cycle Assessment of Energy and CO2 Emissions from Cast In-Situ and Industrialised Building System. Αγαη, vol. 8, no. 5, p. 55, (2019). [Google Scholar]
- M. A. Fauzi, S. H. Hassan, J. N. Yunus, H. Sulaiman, and N. A. Ramli. A review of supply chain management in IBS construction industry: Challenges. J. Eng. Appl. Sci., vol. 12, no. Specialissue 5, pp. 6911–6915, 2017, doi: https://doi.org/10.3923/jeasci.2017.6911.6915 [Google Scholar]
- R. T. Fauzi, P. Lavoie, L. Sorelli, M. D. Heidari, and B. Amor. Exploring the current challenges and opportunities of Life Cycle Sustainability Assessment. Sustain., vol. 11, no. 3, pp. 1–17, (2019) doi: https://doi.org/10.3390/su11030636 [Google Scholar]
- N. Kralisch, Dana and Minkov. Roadmap for Sustainability Assessment in European Process Industries – MEASURE. no. April, (2016) [Google Scholar]
- W. Kloepffer. Life cycle sustainability assessment of products (with Comments by Helias A. Udo de Haes, p. 95). Int. J. Life Cycle Assess., vol. 13, no. 2, pp. 89–95, (2008), doi: https://doi.org/10.1065/lca2008.02.376. [CrossRef] [Google Scholar]
- C. K. Chau, T. M. Leung, and W. Y. Ng. A Review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on Buildings. Appl. Energy, vol. 143, no. 1, pp. 395–413, (2015), doi: https://doi.org/10.1016/j.apenergy.2015.01.023 [CrossRef] [Google Scholar]
- J. G. Backes and M. Traverso. Application of life cycle sustainability assessment in the construction sector: A systematic literature review. Processes, vol. 9, no. 7, (2021), doi: https://doi.org/10.3390/pr9071248 [CrossRef] [Google Scholar]
- Y. H. Dong and S. T. Ng. A Life Cycle Assessment Model for Evaluating The Environmental Impacts of Building Construction in Hong Kong. Build. Environ., vol. 89, pp. 183–191, (2015), doi: https://doi.org/10.1016/j.buildenv.2015.02.020. [CrossRef] [Google Scholar]
- A. T. Balasbaneh and A. K. B. Marsono. Life Cycle Assessment of IBS in Malaysia and Comparing Human Health on Timber and Concrete Pre-cast. Res. J. Appl. Sci. Eng. Technol., vol. 06, no. 24, pp. 4697–4702, (2013), doi: https://doi.org/10.19026/rjaset.6.3489 [Google Scholar]
- H. J. Kluppel. The Revision of ISO Standards 14040-3 - ISO 14040: Environmental management – Life cycle assessment – Principles and framework - ISO 14044: Environmental management – Life cycle assessment – Requirements and guidelines. (2005), doi: https://doi.org/10.1065/lca2005.03.001 [Google Scholar]
- A. T. Balasbaneh and A. K. B. Marsono. Life cycle assessment of two different IBS of Recipe Endpoint (E) LCIA method. pp. 475–480, (2013). [Google Scholar]
- X. Zhong et al. Global Greenhouse Gas Emissions from Residential and Commercial Building Materials and Mitigation Strategies to 2060. Nat. Commun., vol. 12, no. 1, pp. 1–10, (2021), doi: https://doi.org/10.1038/s41467-021-26212-z [CrossRef] [Google Scholar]
- H. Chappells and E. Shove. Debating the future of comfort: Environmental sustainability, energy consumption, and the indoor environment. Build. Res. Inf., vol. 33, no. 1, pp. 32–40, (2005), doi: https://doi.org/10.1080/0961321042000322762 [CrossRef] [Google Scholar]
- P. O. Akadiri, E. A. Chinyio, and P. O. Olomolaiye. Design of a sustainable building: A conceptual framework for implementing sustainability in the building sector. Buildings, vol. 2, no. 2, pp. 126–152, (2012), doi: https://doi.org/10.3390/buildings2020126 [CrossRef] [Google Scholar]
- I. Jahan, G. Zhang, M. Bhuiyan, and S. Navaratnam. Circular Economy of Construction and Demolition Wood Waste—A Theoretical Framework Approach. Sustain., vol. 14, no. 17, (2022), doi: https://doi.org/10.3390/su141710478 [Google Scholar]
- J.W. Owen. Life-Cycle Asssesssment. (2000). [Google Scholar]
- J. P. W. Scharlemann et al. Towards Understanding Interactions Between Sustainable Development Goals: The Role of Environment–Human Linkages. Sustain. Sci., vol. 15, no. 6, pp. 1573–1584, (2020), doi: https://doi.org/10.1007/s11625-020-00799-6 [CrossRef] [Google Scholar]
- Z. Wu and M. Pagell. Balancing Priorities: Decision-Making in Sustainable Supply Chain Management. J. Oper. Manag., vol. 29, no. 6, pp. 577–590, (2011), doi: https://doi.org/10.1016/j.jom.2010.10.001 [CrossRef] [Google Scholar]
- D. A. Salas, A. D. Ramirez, C. R. Rodríguez, D. M. Petroche, A. J. Boero, and J. Duque-Rivera. Environmental Impacts, Life Cycle Assessment and Potential Improvement Measures for Cement Production: A Literature Review. J. Clean. Prod., vol. 113, pp. 114–122, (2016), doi: https://doi.org/10.1016/j.jclepro.2015.11.078 [CrossRef] [Google Scholar]
- R. Hoogmartens, S. V. Passel, K. V. Acker, and M. Dubois. Bridging The Gap Between LCA, LCC, and CBA as Sustainability Assessment Tools. Environ. Impact Assess. Rev., vol. 48, pp. 27–33, (2014), doi: https://doi.org/10.1016/j.eiar.2014.05.001 [CrossRef] [Google Scholar]
- W. Klöpffer. The Critical Review of Life Cycle Assessment Studies According to ISO 14040 and 14044. Int. J. Life Cycle Assess., vol. 17, no. 9, pp. 1087–1093, (2012), doi: https://doi.org/10.1007/s11367-012-0426-7 [CrossRef] [Google Scholar]
- A. Fava, A. Smerek, A. B. Heinrich, and L. Morrison. The Role of the Society of Environmental Toxicology and Chemistry (SETAC) in Life Cycle Assessment (LCA) Development and Application. (2014). [Google Scholar]
- S. Toniolo, R. C. Tosato, F. Gambaro, and J. Ren. Life Cycle Thinking Tools: Life Cycle Assessment, Life Cycle Costing, and Social Life Cycle Assessment. Elsevier Inc., (2019). [Google Scholar]
- S. Braide, J. Alucho, C. H. Ohabughiro, N. B. Adeleye. Global Climate Change and Changes in Disease Distribution: A Review in Retrospect. Int. J. Adv. Res. Biol. Sci, vol. 8, no. 6, pp. 1–5, (2020), doi: https://doi.org/10.22192/ijarbs [CrossRef] [Google Scholar]
- G. L. Budiono. Environmental Pollution and Global Climate Change: A Strategic Deterrence Business and Social Problem. Int. J. Sci. Eng., vol. 1, no. 63628, pp. 129–133, (2015). [Google Scholar]
- A. S. Daw. Global Warming Potential and Its Importance. Dict. Ecol. Econ., pp. 247–247, (2019), doi: https://doi.org/10.4337/9781788974912.g.17 [Google Scholar]
- M. Hagen and A. Azevedo. Climate Changes Consequences from Sun-Earth Connections and Anthropogenic Relationships. Nat. Sci., vol. 14, no. 02, pp. 24–41, (2022), doi: https://doi.org/10.4236/ns.2022.142004 [Google Scholar]
- D. J. Wuebbles and A. K. Jain. Concerns about Climate Change and The Role of Fossil Fuel Use. Fuel Process. Technol., vol. 71, no. 1–3, pp. 99–119, (2001,) doi: https://doi.org/10.1016/S0378-3820(01)00139-4 [CrossRef] [Google Scholar]
- W. Greaves. Climate Change and Arctic Security. Springer International Publishing, (2020). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.