Open Access
Issue
BIO Web Conf.
Volume 163, 2025
2025 15th International Conference on Bioscience, Biochemistry and Bioinformatics (ICBBB 2025)
Article Number 01001
Number of page(s) 13
Section Bioinformatics and Computational Biology
DOI https://doi.org/10.1051/bioconf/202516301001
Published online 06 March 2025
  • I. Thiele, B.Ø. Palsson, A protocol for generating a high-quality genome-scale metabolic reconstruction, Nature Protocols 5, 93 (2010). [CrossRef] [PubMed] [Google Scholar]
  • A. Elnaggar, M. Heinzinger, C. Dallago, G. Rihawi, Y. Wang, L. Jones, T. Gibbs, T. Feher, C. Angerer, M. Steinegger et al., ProtTrans: Towards cracking the language of life’s code through self-supervised deep learning and high performance computing, IEEE Trans. Pattern Analysis & Machine Intelligence pp. 7112–7127 (2022). [CrossRef] [PubMed] [Google Scholar]
  • K. Han, M. Wang, L. Zhang, Y. Wang, M. Guo, M. Zhao, Q. Zhao, Y. Zhang, N. Zeng, C. Wang, Predicting ion channels genes and their types with machine learning techniques, Frontiers in Genetics 10, 399 (2019). [CrossRef] [PubMed] [Google Scholar]
  • V.S. Reddy, M.H. Saier Jr, BioV Suite–a collection of programs for the study of transport protein evolution, FEBS Journal 279, 2036 (2012). [CrossRef] [PubMed] [Google Scholar]
  • F. Aplop, G. Butler, TransATH: Transporter prediction via annotation transfer by homology, ARPN J. of Engineering & Applied Sciences 12 (2017). [Google Scholar]
  • O. Dias, M. Rocha, E.C. Ferreira, I. Rocha, Reconstructing genome-scale metabolic models with merlin, Nucleic Acids Research 43, 3899 (2015). [CrossRef] [PubMed] [Google Scholar]
  • J. Capela, D. Lagoa, R. Rodrigues, E. Cunha, F. Cruz, A. Barbosa, J. Bastos, D. Lima, E.C. Ferreira, M. Rocha et al., Merlin, an improved framework for the reconstruction of high-quality genome-scale metabolic models, Nucleic Acids Research 50, 6052 (2022). [CrossRef] [PubMed] [Google Scholar]
  • E. Cunha, D. Lagoa, J.P. Faria, F. Liu, C.S. Henry, O. Dias, TranSyT, an innovative framework for identifying transport systems, Bioinformatics 39, btad466 (2023). [CrossRef] [PubMed] [Google Scholar]
  • N. Loira, A. Zhukova, D.J. Sherman, Pantograph: A template-based method for genome-scale metabolic model reconstruction, J. of Bioinformatics & Computational Biology 13, 1550006 (2015). [CrossRef] [PubMed] [Google Scholar]
  • H. Li, V.A. Benedito, M.K. Udvardi, P.X. Zhao, TransportTP: a two-phase classification approach for membrane transporter prediction and characterization, BMC Bioinformatics 10, 418 (2009). [CrossRef] [PubMed] [Google Scholar]
  • M.M. Gromiha, Y. Yabuki, Functional discrimination of membrane proteins using machine learning techniques, BMC Bioinformatics 9, 135 (2008). [CrossRef] [PubMed] [Google Scholar]
  • Y.Y. Ou, S.A. Chen, M.M. Gromiha, Classification of transporters using efficient radial basis function networks with position-specific scoring matrices & biochemical properties, Proteins: Structure, Function & Bioinformatics 78, 1789 (2010). [CrossRef] [PubMed] [Google Scholar]
  • S.A. Chen, Y.Y. Ou, T.Y. Lee, M.M. Gromiha, Prediction of transporter targets using efficient RBF networks with PSSM profiles & biochemical properties, Bioinformatics 27, 2062 (2011). [CrossRef] [PubMed] [Google Scholar]
  • N.S. Schaadt, J. Christoph, V. Helms, Classifying substrate specificities of membrane transporters from Arabidopsis thaliana, J. Chemical Information & Modeling 50, 1899 (2010). [CrossRef] [PubMed] [Google Scholar]
  • N. Schaadt, V. Helms, Functional classification of membrane transporters and channels based on filtered TM/non-TM amino acid composition, Biopolymers 97, 558 (2012). [CrossRef] [PubMed] [Google Scholar]
  • A. Barghash, V. Helms, Transferring functional annotations of membrane transporters on the basis of sequence similarity and sequence motifs, BMC Bioinformatics 14, 343 (2013). [CrossRef] [PubMed] [Google Scholar]
  • N.K. Mishra, J. Chang, P.X. Zhao, Prediction of membrane transport proteins and their substrate specificities using primary sequence information, PLoS ONE 9, e100278 (2014). [CrossRef] [PubMed] [Google Scholar]
  • M. Alballa, F. Aplop, G. Butler, TranCEP: Predicting the substrate class of transmembrane transport proteins using compositional, evolutionary, and positional information, PLoS ONE 15, e0227683 (2020). [CrossRef] [PubMed] [Google Scholar]
  • M. Alballa, Ph.D. thesis, Concordia University (2020) [Google Scholar]
  • M. Alballa, G. Butler, TooT-SC: Predicting eleven substrate classes of transmembrane transport proteins, bioRxiv (2022). 10.1101/2022.01.25.477715 [Google Scholar]
  • H. Lin, L. Han, C. Cai, Z. Ji, Y. Chen, Prediction of transporter family from protein sequence by support vector machine approach, Proteins: Structure, Function & Bioinformatics 62, 218 (2006). [CrossRef] [PubMed] [Google Scholar]
  • Y.F. Liou, T. Vasylenko, C.L. Yeh, W.C. Lin, S.H. Chiu, P. Charoenkwan, L.S. Shu, S.Y. Ho, H.L. Huang, SCMMTP: identifying and characterizing membrane transport proteins using propensity scores of dipeptides, BMC Genomics 16, S6 (2015). [CrossRef] [Google Scholar]
  • L. Li, J. Li, W. Xiao, Y. Li, Y. Qin, S. Zhou, H. Yang, Prediction the substrate specificities of membrane transport proteins based on support vector machine and hybrid features, IEEE Trans. Computational Biology & Bioinformatics 13, 947 (2016). [CrossRef] [PubMed] [Google Scholar]
  • Q.T. Ho, D.V. Phan, Y.Y. Ou et al., Using word embedding technique to efficiently represent protein sequences for identifying substrate specificities of transporters, Analytical Biochemistry 577, 73 (2019). [CrossRef] [PubMed] [Google Scholar]
  • S. Ataei, G. Butler, Predicting the specific substrate for transmembrane transport proteins using BERT language model, in 2022 IEEE Conf. on Computational Intelligence in Bioinformatics & Computational Biology (IEEE, 2022), pp. 1–8 [Google Scholar]
  • J. Devlin, M.W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep bidirectional transformers for language understanding, arXiv:1810.04805 (2018). [Google Scholar]
  • A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, Advances in Neural Information Processing Systems 30 (2017). [Google Scholar]
  • S.J. Pan, Q. Yang, A survey on transfer learning, IEEE Transactions on Knowledge & Data Engineering 22, 1345 (2009). [Google Scholar]
  • M. Steinegger, J. Söding, Clustering huge protein sequence sets in linear time, Nature Communications 9, 1 (2018). [CrossRef] [PubMed] [Google Scholar]
  • The UniProt Consortium, UniProt: the universal protein knowledgebase in 2023, Nucleic Acids Research 51, D523 (2022). 10.1093/nar/gkac1052 [Google Scholar]
  • Y. Huang, B. Niu, Y. Gao, L. Fu, W. Li, CD-HIT Suite: a web server for clustering & comparing biological sequences, Bioinformatics 26, 680 (2010). [CrossRef] [PubMed] [Google Scholar]
  • B. Krawczyk, Learning from imbalanced data: open challenges and future directions, Progress in Artificial Intelligence 5, 221 (2016). [CrossRef] [Google Scholar]
  • D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980 (2014). [Google Scholar]
  • A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., PyTorch: An imperative style, highperformance deep learning library, Advances in Neural Information Processing Systems 32 (2019). [Google Scholar]
  • T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz et al., Huggingface’s transformers: State-ofthe-art natural language processing, arXiv:1910.03771 (2019). [Google Scholar]
  • Z. Ding, Ph.D. thesis, Georgia State University (2011) [Google Scholar]
  • G.M. Weiss, F. Provost, Learning when training data are costly: The effect of class distribution on tree induction, Journal of Artificial Intelligence Research 19, 315 (2003). [CrossRef] [Google Scholar]
  • M. Bekkar, H.K. Djemaa, T.A. Alitouche, Evaluation measures for models assessment over imbalanced data sets, J. Information Engineering & Applications 3, 27 (2013). [Google Scholar]
  • C.D. Manning, P. Raghavan, H. Schütze, Introduction to information retrieval (Cambridge University Press, 2008) [Google Scholar]
  • J. Gorodkin, Comparing two K-category assignments by a K-category correlation coefficient, Computational Biology & Chemistry 28, 367 (2004). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.