Open Access
Issue
BIO Web Conf.
Volume 163, 2025
2025 15th International Conference on Bioscience, Biochemistry and Bioinformatics (ICBBB 2025)
Article Number 02002
Number of page(s) 10
Section Biochemistry and Biotechnology
DOI https://doi.org/10.1051/bioconf/202516302002
Published online 06 March 2025
  • A. H. Free and H. M. Free, Urinalysis. CRC Crit. Rev. Clin. Lab. Sci. 3, 481 (1972). [Google Scholar]
  • D. Ryan, K. Robards, P. D. Prenzler, and M. Kendall, Recent and potential developments in the analysis of urine: A review. Anal. Chim. Acta 684, 17 (2011). [CrossRef] [Google Scholar]
  • A. J. Callens and J. W. Bartges, Urinalysis. Vet. Clin. North Am. Small Anim. Pract. 45, 621 (2015). [CrossRef] [Google Scholar]
  • E. Lepowsky, F. Ghaderinezhad, S. Knowlton, and S. Tasoglu, Paper-based assays for urine analysis. Biomicrofluidics 11, 051501 (2017). [CrossRef] [PubMed] [Google Scholar]
  • R. Lei, R. Huo, and C. Mohan, Current and emerging trends in point-of-care urinalysis tests. Expert Rev. Mol. Diagn. 20, 69 (2020). [CrossRef] [PubMed] [Google Scholar]
  • M. Oyaert and J. Delanghe, Progress in Automated Urinalysis. Ann. Lab. Med. 39, 15 (2019). [CrossRef] [PubMed] [Google Scholar]
  • M. Paraskevaidi, P. L. Martin-Hirsch, and F. L. Martin, ATR-FTIR Spectroscopy Tools for Medical Diagnosis and Disease Investigation. Nanotechnol. Charact. Tools Biosensing Med. Diagn., edited by C. S. S. R. Kumar (Springer Berlin Heidelberg, Berlin, Heidelberg, 2018), pp. 163–211. [CrossRef] [Google Scholar]
  • M.-M. Blum and H. John, Historical perspective and modern applications of Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR): Modern applications of ATR-FTIR. Drug Test. Anal. 4, 298 (2012). [CrossRef] [PubMed] [Google Scholar]
  • M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. MartinHirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9, 1771 (2014). [CrossRef] [PubMed] [Google Scholar]
  • D. Pérez-Guaita, Á. Sánchez-Illana, S. Garrigues, and M. De La Guardia, Determination of lidocaine in urine at low ppm levels using dispersive microextraction and attenuated total reflectance–Fourier transform infrared measurements of dry films. Microchem. J. 121, 178 (2015). [CrossRef] [Google Scholar]
  • F. K. Algethami, S. M. Eid, K. M. Kelani, M. R. Elghobashy, and M. K. Abd El-Rahman, Chemical fingerprinting and quantitative monitoring of the doping drugs bambuterol and terbutaline in human urine samples using ATR-FTIR coupled with a PLSR chemometric tool. RSC Adv. 10, 7146 (2020). [CrossRef] [PubMed] [Google Scholar]
  • D. Perez-Guaita, J. Ventura-Gayete, C. Pérez-Rambla, M. Sancho-Andreu, S. Garrigues, and M. de la Guardia, Protein determination in serum and whole blood by attenuated total reflectance infrared spectroscopy. Anal. Bioanal. Chem. 404, 649 (2012). [CrossRef] [PubMed] [Google Scholar]
  • L. V. Bel’skaya, E. A. Sarf, and D. V. Solomatin, Application of FTIR Spectroscopy for Quantitative Analysis of Blood Serum: A Preliminary Study. Diagnostics 11, 2391 (2021). [CrossRef] [PubMed] [Google Scholar]
  • D. C. Caixeta, C. Lima, Y. Xu, M. Guevara-Vega, F. S. Espindola, R. Goodacre, D. M. Zezell, and R. Sabino-Silva, Monitoring glucose levels in urine using FTIR spectroscopy combined with univariate and multivariate statistical methods. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 290, 122259 (2023). [CrossRef] [Google Scholar]
  • S. Farooq and D. M. Zezell, Diabetes Monitoring through Urine Analysis Using ATRFTIR Spectroscopy and Machine Learning. Chemosensors 11, 565 (2023). [CrossRef] [Google Scholar]
  • F. Ripanti, N. Luchetti, A. Nucara, V. Minicozzi, A. D. Venere, A. Filabozzi, and M. Carbonaro, Int. J. Biol. Normal mode calculation and infrared spectroscopy of proteins in water solution: Relationship between amide I transition dipole strength and secondary structure. Macromol. 185, 369 (2021). [Google Scholar]
  • J. Titus, C. Filfilt, A. G. U. Perera, and J. K. Hilliard, Early detection of cell activation by atr-ftir spectroscopy. (2016) [Google Scholar]
  • K. V. Oliver, F. Matjiu, C. Davey, S. Moochhala, R. J. Unwin, and P. R. Rich, Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy as a bedside diagnostic tool for detecting renal disease biomarkers in fresh urine samples. Edited by G. L. Coté (San Francisco, California, United States, 2015), p. 933202. [Google Scholar]
  • N. Sarigul, İ. Kurultak, A. Uslu Gökceoğlu, and F. Korkmaz, Urine analysis using FTIR spectroscopy: A study on healthy adults and children. J. Biophotonics 14, (2021). [CrossRef] [Google Scholar]
  • Usoltsev, Sitnikova, Kajava, and Uspenskaya, Systematic FTIR Spectroscopy Study of the Secondary Structure Changes in Human Serum Albumin under Various Denaturation Conditions. Biomolecules 9, 359 (2019). [CrossRef] [PubMed] [Google Scholar]
  • G. Guidotti, R. J. Hill, and W. Konigsberg, The Structure of Human Hemoglobin. J. Biol. Chem. 237, 2184 (1962). [CrossRef] [Google Scholar]
  • D. Perez-Guaita, Z. Richardson, P. Heraud, and B. Wood, Quantification and Identification of Microproteinuria Using Ultrafiltration and ATR-FTIR Spectroscopy. Anal. Chem. 92, 2409 (2020). [CrossRef] [PubMed] [Google Scholar]
  • M. E. S. Steven L. Cowart, Glycosuria. Clin. Methods Hist. Phys. Lab. Exam. 3rd Ed. (1990), p. Chapter 139. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.