Open Access
Issue
BIO Web Conf.
Volume 163, 2025
2025 15th International Conference on Bioscience, Biochemistry and Bioinformatics (ICBBB 2025)
Article Number 04001
Number of page(s) 12
Section Medical Image Processing and Biometric Signal Analysis
DOI https://doi.org/10.1051/bioconf/202516304001
Published online 06 March 2025
  • M.C. Florkow, K. Willemsen, V.V. Mascarenhas, E.H. Oei, M. van Stralen, P.R. Seevinck, Magnetic resonance imaging versus computed tomography for threedimensional bone imaging of musculoskeletal pathologies: a review, Journal of Magnetic Resonance Imaging 56, 11 (2022). [CrossRef] [PubMed] [Google Scholar]
  • O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in Medical image computing and computer-assisted intervention– MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18 (Springer, 2015), pp. 234–241 [Google Scholar]
  • N.S. Punn, S. Agarwal, Modality specific u-net variants for biomedical image segmentation: a survey, Artificial Intelligence Review 55, 5845 (2022). [CrossRef] [PubMed] [Google Scholar]
  • A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. Fan, W.E. Grimson, A. Willsky, A shape-based approach to the segmentation of medical imagery using level sets, IEEE transactions on medical imaging 22, 137 (2003). [CrossRef] [PubMed] [Google Scholar]
  • T.N. Pappas, N.S. Jayant, An adaptive clustering algorithm for image segmentation, in International Conference on Acoustics, Speech, and Signal Processing, (IEEE, 1989), pp. 1667–1670 [Google Scholar]
  • K. Held, E.R. Kops, B.J. Krause, W.M. Wells, R. Kikinis, H.W. Muller-Gartner, Markov random field segmentation of brain mr images, IEEE transactions on medical imaging 16, 878 (1997). [CrossRef] [PubMed] [Google Scholar]
  • Z. Akkus, A. Galimzianova, A. Hoogi, D.L. Rubin, B.J. Erickson, Deep learning for brain mri segmentation: state of the art and future directions, Journal of digital imaging 30, 449 (2017). [CrossRef] [PubMed] [Google Scholar]
  • R. Wang, T. Lei, R. Cui, B. Zhang, H. Meng, A.K. Nandi, Medical image segmentation using deep learning: A survey, IET image processing 16, 1243 (2022). [CrossRef] [Google Scholar]
  • X. Wei, T. Feng, Q. Huang, Q. Chen, C. Zuo, H. Ma, Deep learning-powered biomedical photoacoustic imaging, Neurocomputing p. 127207 (2023). [Google Scholar]
  • A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.C. Fillion-Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka et al., 3d slicer as an image computing platform for the quantitative imaging network, Magnetic resonance imaging 30, 1323 (2012). [CrossRef] [PubMed] [Google Scholar]
  • K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE conference on computer vision and pattern recognition (2016), pp. 770–778 [Google Scholar]
  • L.R. Dice, Measures of the amount of ecologic association between species, Ecology 26, 297 (1945). [CrossRef] [Google Scholar]
  • J. Ma, J. Chen, M. Ng, R. Huang, Y. Li, C. Li, X. Yang, A.L. Martel, Loss odyssey in medical image segmentation, Medical Image Analysis 71, 102035 (2021). https://doi.org/10.1016/j.media.2021.102035 [CrossRef] [PubMed] [Google Scholar]
  • Wikipedia contributors, Nrrd — Wikipedia, the free encyclopedia (2022), [Online; accessed 27-August-2024], https://en.wikipedia.org/w/index.php?title=Nrrd&oldid=1085264080 [Google Scholar]
  • Wikipedia contributors, Stl (file format) — Wikipedia, the free encyclopedia (2024), [Online; accessed 27-August-2024], https://en.wikipedia.org/w/index.php?title=STL_(file_format)&oldid=1230514338 [Google Scholar]
  • Wikipedia contributors, Dicom — Wikipedia, the free encyclopedia (2024), [Online; accessed 27-August-2024], https://en.wikipedia.org/w/index.php?title=DICOM&oldid=1236385307 [Google Scholar]
  • X. Liu, L. Song, S. Liu, Y. Zhang, A review of deep-learning-based medical image segmentation methods, Sustainability 13, 1224 (2021). [CrossRef] [Google Scholar]
  • M. Yeung, E. Sala, C.B. Schönlieb, L. Rundo, Unified focal loss: Generalising dice and cross entropy-based losses to handle class imbalanced medical image segmentation, Computerized Medical Imaging and Graphics 95, 102026 (2022). [CrossRef] [PubMed] [Google Scholar]
  • S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, D. Terzopoulos, Image segmentation using deep learning: A survey, IEEE transactions on pattern analysis and machine intelligence 44, 3523 (2021). [Google Scholar]
  • S.S.M. Salehi, D. Erdogmus, A. Gholipour, Tversky loss function for image segmentation using 3d fully convolutional deep networks (2017), 1706.05721, https://arxiv.org/abs/1706.05721 [Google Scholar]
  • W. Zhu, Y. Huang, L. Zeng, X. Chen, Y. Liu, Z. Qian, N. Du, W. Fan, X. Xie, Anatomynet: deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy, Medical physics 46, 576 (2019). [CrossRef] [PubMed] [Google Scholar]
  • D. Karimi, S.E. Salcudean, Reducing the hausdorff distance in medical image segmentation with convolutional neural networks, IEEE Transactions on medical imaging 39, 499 (2019). [Google Scholar]
  • C. Wang, Y. Zhang, M. Cui, P. Ren, Y. Yang, X. Xie, X.S. Hua, H. Bao, W. Xu, Active boundary loss for semantic segmentation, Proceedings of the AAAI Conference on Artificial Intelligence 36, 2397 (2022). 10.1609/aaai.v36i2.20139 [CrossRef] [Google Scholar]
  • M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, C. Pal, The Importance of Skip Connections in Biomedical Image Segmentation, in Deep Learning and Data Labeling for Medical Applications, edited by G. Carneiro, D. Mateus, L. Peter, A. Bradley, J.M.R.S. Tavares, V. Belagiannis, J.P. Papa, J.C. Nascimento, M. Loog, Z. Lu et al. (Springer International Publishing, Cham, 2016), pp. 179–187 [CrossRef] [Google Scholar]
  • M. Thomas, A.T. Joy, Elements of information theory (Wiley-Interscience, 2006) [Google Scholar]
  • T. Eelbode, J. Bertels, M. Berman, D. Vandermeulen, F. Maes, R. Bisschops, M.B. Blaschko, Optimization for medical image segmentation: theory and practice when evaluating with dice score or jaccard index, IEEE transactions on medical imaging 39, 3679 (2020). [CrossRef] [PubMed] [Google Scholar]
  • M. Berman, A.R. Triki, M.B. Blaschko, The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks, in Proceedings of the IEEE conference on computer vision and pattern recognition (2018), pp. 4413–4421 [Google Scholar]
  • D. Vasu, S. Song, H. Kainz, J. Lee, MRI Segmentation of Musculoskeletal Components Using U-Net: Preliminary Results, in Proceedings of the 2024 14th International Conference on Bioscience, Biochemistry and Bioinformatics (2024), pp. 30–35 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.