Open Access
Issue
BIO Web Conf.
Volume 164, 2025
2025 12th International Conference on Asia Agriculture and Animal (ICAAA 2025)
Article Number 03001
Number of page(s) 10
Section Application of Biotechnology in Agricultural Resources Utilization and Environmental Remediation
DOI https://doi.org/10.1051/bioconf/202516403001
Published online 14 March 2025
  • T. Phenrat, P. Hongkumnerd, J. Suk-in, and V. Khum-in, Nanoscale zerovalent Iron particles for magnet-assisted soil washing of cadmium-contaminated paddy soil: proof of concept. Environ.Chem. 16, 6 (2019). https://doi.org/10.1071/EN19028 [Google Scholar]
  • G. Petruzzelli, M. Barbafieri, E. Franchi, D. Fusini, M. Vocciante, and F. Pedron, Effects of soil aging on cadmium bioavailability and bioaccessibility at a contaminated site. Environments. 10, 105 (2023). https://doi.org/10.3390/environments10060105 [CrossRef] [Google Scholar]
  • Y. Hamid, L. Tang, M.I. Sohail, X. Cao, B. Hussain, and M.Z. Aziz, An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. Sci. Total Environ. 660, (2019). https://doi.org/10.1016/j.scitotenv.2018.12.419 [Google Scholar]
  • J.T. Qiao, T.X. Liu, X.Q. Wang, F.B. Li, Y.H. Lv, and J.H. Cui, Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Chemosphere. 195, (2018). https://doi.org/10.1016/j.chemosphere.2017.12.081 [Google Scholar]
  • T. Phenrat, and G.V. (Eds.) Lowry, Nanoscale Zerovalent Iron Particles for Environmental Restoration: From Fundamental Science to Field Scale Engineering Applications (Springer International Publishing, Switzerland, 2019b) [Google Scholar]
  • L. Stevenson, M. Adeleye, Y. Su, Y. Zhang, A. Keller, and R. M. Nisbet, Remediation of Cadmium Toxicity by Sulfidized Nano-Iron: The Importance of Organic Material. ACS Nano. 11, 10 (2017). https://doi.org/10.1021/acsnano.7b05970 [Google Scholar]
  • C. Fajardo, L.T. Ortíz, M.L. Rodríguez-Membibre, M. Nande, M.C. Lobo, and M. Martin, Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: A molecular approach. Chemosphere. 86, 8 (2012). https://doi.org/10.1016/j.chemosphere.2011.11.041 [Google Scholar]
  • J. R. Gonçalves, The Soil and Groundwater Remediation with Zero Valent Iron Nanoparticles. Procedia Eng. 143, (2016). https://doi.org/10.1016/j.proeng.2016.06.122 [Google Scholar]
  • A. Ševcu, S. E. T. Yehia, E. J. Joner, and A. Cerník, Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. M&E. 26, 4 (2011). https://doi.org/10.1264/jsme2.ME11126 [Google Scholar]
  • A. D’ors, A. Sanchez-Fortún, A. Cort´es-T´ellez, C. Fajardo, G. Mengs, M. Nande, C. Martín, G. Costa, M. Martín, M.C. Bartolom´e, and S. Sanchez-Fortún, Adverse effects of iron-based nanoparticles on freshwater phytoplankton Scenedesmus armatus and Microcystis aeruginosa strains. Chemosphere. 339, 139710 (2023). https://doi.org/10.1016/j.chemosphere.2023.139710 [CrossRef] [PubMed] [Google Scholar]
  • V. Khum-in, J. Suk-in, P. In-ai, K. Piaowana, Y. Phaimisap, W. Supanpaiboon, and T. Phenrat, Combining biochar and zerovalent iron (BZVI) as a paddy field soil amendment for heavy cadmium (Cd) contamination decreases Cd but increases zinc and iron concentrations in rice grains: a field-scale evaluation. PSEP. 141, (2020). https://doi.org/10.1016/j.psep.2020.05.008 [Google Scholar]
  • V. Khum-in, J. Suk-in, P. In-ai, K. Piaowan, Y. Praimeesub, K. Rintachai, W. Supanpaiboon, and T. Phenrat, Combining magnet-assisted soil washing and soil amendment with zero-valent iron to restore safe rice cultivation in real cadmiumcontaminated paddy fields. Chemosphere. 340, 139816 (2023). https://doi.org/10.1016/j.chemosphere.2023.139816 [CrossRef] [PubMed] [Google Scholar]
  • Z. Zhengcheng, M. Yoko, X. Zhenxing, S. Yutaka, O. Hirotomo, and S. SKeishi, Active Nitrogen fixation by iron-reducing bacteria in rice paddy soil and its further enhancement by iron application. Applied Sci. 13, 8156 (2023). https://doi.org/10.3390/app13148156 [CrossRef] [Google Scholar]
  • F.N. Mbai, E.N. Magiri, V.N. Matiru, J. Nganga, and V.C.S. Nyambati, Isolation and characterization of bacterial root endophytes with potential to enhance plant growth from Kenyan Basmati rice. Am.Int.J.Contemp.Res. 3, (2013). https://repository.dkut.ac.ke:8080/xmlui/handle/123456789/7779 [Google Scholar]
  • S. S. Yu, Z. K. Z. K., Latt, E. P. Kyaw, and T. M. Ly, Accumulation of ammonia in culture broth by wild-type nitrogen-fixing bacterium, Stenotrophomonas maltophilia. IJABPT. 2, 1 (2011). https://imsear.searo.who.int/handle/123456789/161303 [Google Scholar]
  • F. Kafilzadeh, Y. Moghtaderi, and A.R. Jahromi, Isolation and identification of cadmium-resistant bacteria in Soltan Abad river sediments and determination of tolerance of bacteria through MIC and MBC. Eur. J. Exp. Biol. 3, 5 (2013). [Google Scholar]
  • S. A. Sabry, H. A. Ghozlan, and D. M. Abou-Zeid, Metal tolerance and antibiotic resistance patterns of a bacterial population isolated from sea water. J. Appl. Microbiol. 82, 2 (1997). https://doi.org/10.1111/j.1365-2672.1997.tb03580.x [Google Scholar]
  • D. P. Pires, A. Dötsch, E. M. Anderson, Y. Hao, C. M. Khursigara, J. S. Lam, and J. Azeredo, A Genotypic Analysis of Five P. aeruginosa Strains after Biofilm Infection by Phages Targeting Different Cell Surface Receptors. Front. Microbiol. 8, (2017). https://doi.org/10.3389/fmicb.2017.01229 [CrossRef] [Google Scholar]
  • D. S. Wagh, R. N. Shermale, and B. V. Mahure, Isolation and Characterization of Nitrogen Fixing Bacteria from Agricultural Rhizosphere. IOSR-JAVS. 8, 6 (2015). DOI: 10.9790/2380-08624852 [Google Scholar]
  • R. C. Dubey, D.K. Maheshwari, H. Kumar, and K. Choure, Assessment of diversity and plant growth promoting attributes of rhizobia isolated from Cajanus cajan L. Afr. J. Biotechnol. 9, (2010). DOI:10.4314/AJB.V9I50 [Google Scholar]
  • S. Kumar, G. Stecher, and K. Tamura, Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol.. 33, 1870–1874 (2016). DOI: 10.1093/molbev/msw054 [CrossRef] [PubMed] [Google Scholar]
  • I.J. Schalk, M. Hannauer, and A. Braud, New roles for bacterial siderophores in metal transport and tolerance. Environ. Microbiol. 13, 11 (2011). DOI: 10.1111/j.1462-2920.2011.02556.x [Google Scholar]
  • J. Sochor, O. Zitka, D. Hynek, E. Jilkova, L. Krejcova, L. Trnkova, and R. Kizek, Bio-Sensing of Cadmium (II) Ions Using Staphylococcus aureus. J. Sens. 11, 11 (2011). DOI: 10.3390/s111110638 [Google Scholar]
  • P. Kotchaplai, E. Khan, and A. S. Vangnai, Membrane Alterations in Pseudomonas putida F1 Exposed to Nanoscale Zerovalent Iron: Effects of Short-Term and Repetitive nZVI Exposure. Environ. Sci. Technol. 51, 14 (2017). https://doi:10.1021/acs.est.7b00736 [Google Scholar]
  • C. Lee, J. Y. Kim, W. I. Lee, K. L. Nelson, J. Yoon, and D. L. Sedlak, Bactericidal Effect of Zero-Valent Iron Nanoparticles on Escherichia coli. Environ. Sci. Technol. 42, 13 (2008). https://doi:10.1021/es800408u [CrossRef] [PubMed] [Google Scholar]
  • L. Chen, S. Jin, P. H. Fallgren, F. Liu, and P.J. Colberg, Passivation of zero-valent iron by denitrifying bacteria and the impact on trichloroethene reduction in groundwater. WST. 67, 6 (2013). https://doi.org/10.2166/wst.2013.689 [Google Scholar]
  • N. Desnoues, M. Lin, X. Guo, L. Ma, R. Carreño-Lopez, and C. Elmerich, Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice. J. Microbiol. 149, 8 (2003). https://doi:10.1099/mic.0.26270-0 [Google Scholar]
  • J. C. Gaby, and D. H. Buckley, A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria. Database: Database J. Biol. Databases Curation. (2014). https://doi.org/10.1093/database/bau001 [Google Scholar]
  • J.-S. Chen, J. Toth, and M. Kasap, Nitrogen-fixation genes and nitrogenase activity in Clostridium acetobutylicum and Clostridium beijerinckii. JIMB. 27, 5 (2001). https://doi:10.1038/sj.jim.7000083 [Google Scholar]
  • R. Fani, R. Gallo, and P. Liò, Molecular Evolution of Nitrogen Fixation: The Evolutionary History of the nifD, nifK, nifE, and nifN Genes. J. Mol. Evol. 51, 1 (2000). DOI: 10.1007/s002390010061 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.