Open Access
Issue |
BIO Web Conf.
Volume 166, 2025
2025 International Conference on Biomedical Engineering and Medical Devices (ICBEMD 2025)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 7 | |
Section | Neuroscience and Frontier Technology in Medicine | |
DOI | https://doi.org/10.1051/bioconf/202516601005 | |
Published online | 10 March 2025 |
- Wallace MT, Woynaroski TG, Stevenson RA. Multisensory Integration as a Window into Orderly and Disrupted Cognition and Communication. Annu Rev Psychol. 2020;71:193–219. [CrossRef] [PubMed] [Google Scholar]
- Wallace MT, Stevenson RA. The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities. Neuropsychologia. 2014;64:105–23. [CrossRef] [PubMed] [Google Scholar]
- Meredith M, Nemitz J, Stein B. Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J Neurosci. 1987;7:3215–29. [CrossRef] [PubMed] [Google Scholar]
- Thye MD, Bednarz HM, Herringshaw AJ, Sartin EB, Kana RK. The impact of atypical sensory processing on social impairments in autism spectrum disorder. Developmental Cognitive Neuroscience. 2018;29:151–67. [CrossRef] [PubMed] [Google Scholar]
- Gaudio S, Brooks SJ, Riva G. Nonvisual Multisensory Impairment of Body Perception in Anorexia Nervosa: A Systematic Review of Neuropsychological Studies. PLOS ONE. 2014;9. [Google Scholar]
- Kaye WH, Wierenga CE, Bailer UF, Simmons AN, Bischoff-Grethe A. Nothing tastes as good as skinny feels: the neurobiology of anorexia nervosa. Trends in Neurosciences. 2013;36:110–20. [CrossRef] [PubMed] [Google Scholar]
- Winding M, Pedigo BD, Barnes CL, Patsolic HG, Park Y, Kazimiers T, et al. The connectome of an insect brain. Science. 2023;379:eadd9330. [CrossRef] [PubMed] [Google Scholar]
- Göpfert MC, Hennig RM. Hearing in Insects. Annual Review of Entomology. 2016;61 Volume 61, 2016:257–76. [CrossRef] [PubMed] [Google Scholar]
- Hansson BS, Stensmyr MC. Evolution of Insect Olfaction. Neuron. 2011;72:698–711. [CrossRef] [PubMed] [Google Scholar]
- Pisani D, Rota-Stabelli O, Feuda R. Sensory Neuroscience: A Taste for Light and the Origin of Animal Vision. Current Biology. 2020;30:R773–5. [CrossRef] [PubMed] [Google Scholar]
- Van Der Kooi CJ, Stavenga DG, Arikawa K, Belušič G, Kelber A. Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology. Annu Rev Entomol. 2021;66:435–61. [CrossRef] [PubMed] [Google Scholar]
- Hardcastle BJ, Krapp HG. Evolution of Biological Image Stabilization. Current Biology. 2016;26:R1010–21. [CrossRef] [PubMed] [Google Scholar]
- Senthilan PR, Piepenbrock D, Ovezmyradov G, Nadrowski B, Bechstedt S, Pauls S, et al. Drosophila Auditory Organ Genes and Genetic Hearing Defects. Cell. 2012;150:1042–54. [CrossRef] [PubMed] [Google Scholar]
- Leung NY, Thakur DP, Gurav AS, Kim SH, Di Pizio A, Niv MY, et al. Functions of Opsins in Drosophila Taste. Current Biology. 2020;30:1367–1379.e6. [CrossRef] [PubMed] [Google Scholar]
- McEwen RS. The reactions to light and to gravity in Drosophila and its mutants. J Exp Zool. 1918;25:49–106. [CrossRef] [Google Scholar]
- Maimon G, Straw AD, Dickinson MH. A Simple Vision-Based Algorithm for Decision Making in Flying Drosophila. Current Biology. 2008;18:464–70. [CrossRef] [PubMed] [Google Scholar]
- Xiang Y, Yuan Q, Vogt N, Looger LL, Jan LY, Jan YN. Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature. 2010;468:921. [CrossRef] [PubMed] [Google Scholar]
- Kane EA, Gershow M, Afonso B, Larderet I, Klein M, Carter AR, et al. Sensorimotor structure of Drosophila larva phototaxis. Proc Natl Acad Sci U S A. 2013;110:E3868–77. [PubMed] [Google Scholar]
- de Andres-Bragado L, Mazza C, Senn W, Sprecher SG. Statistical modelling of navigational decisions based on intensity versus directionality in Drosophila larval phototaxis. Sci Rep. 2018;8:11272. [CrossRef] [PubMed] [Google Scholar]
- Gaudry Q, Hong EJ, Kain J, de Bivort BL, Wilson RI. Asymmetric neurotransmitter release enables rapid odor lateralization in Drosophila. Nature. 2013;493:424–8. [CrossRef] [PubMed] [Google Scholar]
- Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB. Or83b Encodes a Broadly Expressed Odorant Receptor Essential for Drosophila Olfaction. Neuron. 2004;43:703–14. [CrossRef] [PubMed] [Google Scholar]
- Ditzen M, Pellegrino M, Vosshall LB. Insect Odorant Receptors Are Molecular Targets of the Insect Repellent DEET. Science. 2008;319:1838–42. [CrossRef] [PubMed] [Google Scholar]
- Gershow M, Berck M, Mathew D, Luo L, Kane EA, Carlson JR, et al. Controlling airborne cues to study small animal navigation. Nat Methods. 2012;9:290–6. [CrossRef] [PubMed] [Google Scholar]
- Lesar A, Tahir J, Wolk J, Gershow M. Switch-like and persistent memory formation in individual Drosophila larvae. eLife. 10:e70317. [Google Scholar]
- Scott K. Gustatory Processing in Drosophila melanogaster. Annual Review of Entomology. 2018;63 Volume 63, 2018:15–30. [CrossRef] [PubMed] [Google Scholar]
- Weiss LA, Dahanukar A, Kwon JY, Banerjee D, Carlson JR. The Molecular and Cellular Basis of Bitter Taste in Drosophila. Neuron. 2011;69:258–72. [CrossRef] [PubMed] [Google Scholar]
- Apostolopoulou AA, Rist A, Thum AS. Taste processing in Drosophila larvae. Front Integr Neurosci. 2015 Oct 13;9:50. [CrossRef] [PubMed] [Google Scholar]
- Greenspan RJ, Ferveur J-F. COURTSHIP IN DROSOPHILA. Annual Review of Genetics. 2000;34 Volume 34, 2000:205–32. [CrossRef] [PubMed] [Google Scholar]
- Albert JT, Göpfert MC. Hearing in Drosophila. Current Opinion in Neurobiology. 2015;34:79. [CrossRef] [PubMed] [Google Scholar]
- Yorozu S, Wong A, Fischer BJ, Dankert H, Kernan MJ, Kamikouchi A, et al. Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature. 2009;458:201–5. [CrossRef] [PubMed] [Google Scholar]
- Matsuo E, Kamikouchi A. Neuronal encoding of sound, gravity, and wind in the fruit fly. J Comp Physiol A. 2013;199:253–62. [CrossRef] [PubMed] [Google Scholar]
- Ohyama T, Schneider-Mizell CM, Fetter RD, Aleman JV, Franconville R, Rivera-Alba M, et al. A multilevel multimodal circuit enhances action selection in Drosophila. Nature. 2015;520:633–9. [CrossRef] [PubMed] [Google Scholar]
- Sayeed O, Benzer S. Behavioral genetics of thermosensation and hygrosensation in Drosophila. Proceedings of the National Academy of Sciences. 1996;93:6079–84. [CrossRef] [PubMed] [Google Scholar]
- Liu L, Yermolaieva O, Johnson WA, Abboud FM, Welsh MJ. Identification and function of thermosensory neurons in Drosophila larvae. Nat Neurosci. 2003;6:267–73. [CrossRef] [PubMed] [Google Scholar]
- Zars T. Hot and cold in Drosophila larvae. Trends in Neurosciences. 2003;26:575–7. [CrossRef] [PubMed] [Google Scholar]
- Ni L, Bronk P, Chang EC, Lowell AM, Flam JO, Panzano VC, et al. A gustatory receptor paralog controls rapid warmth avoidance in Drosophila. Nature. 2013;500:580–4. [CrossRef] [PubMed] [Google Scholar]
- Gallio M, Ofstad TA, Macpherson LJ, Wang JW, Zuker CS. The Coding of Temperature in the Drosophila Brain. Cell. 2011;144:614–24. [CrossRef] [PubMed] [Google Scholar]
- Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, Jegla TJ, et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature. 2008;454:217–20. [CrossRef] [PubMed] [Google Scholar]
- Matheson AMM, Lanz AJ, Medina AM, Licata AM, Currier TA, Syed MH, et al. A neural circuit for windguided olfactory navigation. Nat Commun. 2022;13:4613. [CrossRef] [PubMed] [Google Scholar]
- Wasserman SM, Aptekar JW, Lu P, Nguyen J, Wang AL, Keles MF, et al. Olfactory Neuromodulation of Motion Vision Circuitry in Drosophila. Current Biology. 2015;25:467–72. [CrossRef] [PubMed] [Google Scholar]
- Miroschnikow A, Schlegel P, Pankratz MJ. Making Feeding Decisions in the Drosophila Nervous System. Curr Biol. 2020;30:R831–40. [CrossRef] [PubMed] [Google Scholar]
- Oh SM, Jeong K, Seo JT, Moon SJ. Multisensory interactions regulate feeding behavior in Drosophila. Proceedings of the National Academy of Sciences. 2021;118:e2004523118. [CrossRef] [PubMed] [Google Scholar]
- Bargmann CI. Beyond the connectome: How neuromodulators shape neural circuits. BioEssays. 2012;34:458–65. [CrossRef] [PubMed] [Google Scholar]
- Kim SM, Su C-Y, Wang JW. Neuromodulation of Innate Behaviors in Drosophila. 2017 Jul 25;40:327348. [Google Scholar]
- Ejima A, Smith BPC, Lucas C, Van Der Goes Van Naters W, Miller CJ, Carlson JR, et al. Generalization of Courtship Learning in Drosophila Is Mediated by cis-Vaccenyl Acetate. Current Biology. 2007;17:599–605. [CrossRef] [PubMed] [Google Scholar]
- Thistle R, Cameron P, Ghorayshi A, Dennison L, Scott K. Contact Chemoreceptors Mediate MaleMale Repulsion and Male-Female Attraction during Drosophila Courtship. Cell. 2012;149:1140–51. [CrossRef] [PubMed] [Google Scholar]
- Zhang SX, Rogulja D, Crickmore MA. Dopaminergic Circuitry Underlying Mating Drive. Neuron. 2016;91:168–81. [CrossRef] [PubMed] [Google Scholar]
- Kimura K, Hachiya T, Koganezawa M, Tazawa T, Yamamoto D. Fruitless and Doublesex Coordinate to Generate Male-Specific Neurons that Can Initiate Courtship. Neuron. 2008;59:759–69. [CrossRef] [PubMed] [Google Scholar]
- Clowney EJ, Iguchi S, Bussell JJ, Scheer E, Ruta V. Multimodal Chemosensory Circuits Controlling Male Courtship in Drosophila. Neuron. 2015;87:1036–49. [CrossRef] [PubMed] [Google Scholar]
- Hussain A, Üçpunar HK, Zhang M, Loschek LF, Grunwald Kadow IC. Neuropeptides Modulate Female Chemosensory Processing upon Mating in Drosophila. PLoS Biol. 2016;14:e1002455. [CrossRef] [PubMed] [Google Scholar]
- Billeter J-C, Wolfner MF. Chemical Cues that Guide Female Reproduction in Drosophila melanogaster. J Chem Ecol. 2018;44:750–69. [CrossRef] [PubMed] [Google Scholar]
- Akiba M, Sugimoto K, Aoki R, Murakami R, Miyashita T, Hashimoto R, et al. Dopamine modulates the optomotor response to unreliable visual stimuli in Drosophila melanogaster. Eur J of Neuroscience. 2020;51:822–39. [CrossRef] [PubMed] [Google Scholar]
- Masek P, Worden K, Aso Y, Rubin GM, Keene AC. A Dopamine-Modulated Neural Circuit Regulating Aversive Taste Memory in Drosophila. Current Biology. 2015;25:1535–41. [CrossRef] [PubMed] [Google Scholar]
- Bang S, Hyun S, Hong S-T, Kang J, Jeong K, Park JJ, et al. Dopamine Signalling in Mushroom Bodies Regulates Temperature-Preference Behaviour in Drosophila. PLoS Genet. 2011;7:e1001346. [CrossRef] [PubMed] [Google Scholar]
- Yao Z, Scott K. Serotonergic neurons translate taste detection into internal nutrient regulation. Neuron. 2022;110:1036–1050.e7. [CrossRef] [PubMed] [Google Scholar]
- Sitaraman D, Zars M, LaFerriere H, Chen Y-C, Sable-Smith A, Kitamoto T, et al. Serotonin is necessary for place memory in Drosophila. Proc Natl Acad Sci USA. 2008;105:5579–84. [CrossRef] [PubMed] [Google Scholar]
- Okray Z, Jacob PF, Stern C, Desmond K, Otto N, Talbot CB, et al. Multisensory learning binds neurons into a cross-modal memory engram. Nature. 2023;617:777–84. [CrossRef] [PubMed] [Google Scholar]
- Ghosh DD, Nitabach MN, Zhang Y, Harris G. Multisensory integration in C. elegans. Current Opinion in Neurobiology. 2017;43:110–8. [CrossRef] [PubMed] [Google Scholar]
- Metaxakis A, Petratou D, Tavernarakis N. Multimodal sensory processing in Caenorhabditis elegans. Open Biol. 2018 Jun;8(6):180049. [CrossRef] [PubMed] [Google Scholar]
- Hirokawa J, Bosch M, Sakata S, Sakurai Y, Yamamori T. Functional role of the secondary visual cortex in multisensory facilitation in rats. Neuroscience. 2008;153:1402–17. [CrossRef] [PubMed] [Google Scholar]
- Wallace MarkT, Meredith MA, Stein BarryE. Integration of multiple sensory modalities in cat cortex. Exp Brain Res. 1992;91. [Google Scholar]
- Cappe C, Murray MM, Barone P, Rouiller EM. Multisensory Facilitation of Behavior in Monkeys: Effects of Stimulus Intensity. J Cogn Neurosci. 2010 Dec;22(12):2850–63. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.