Open Access
Issue |
BIO Web Conf.
Volume 166, 2025
2025 International Conference on Biomedical Engineering and Medical Devices (ICBEMD 2025)
|
|
---|---|---|
Article Number | 02007 | |
Number of page(s) | 6 | |
Section | Medical Information and Technological Innovation Research | |
DOI | https://doi.org/10.1051/bioconf/202516602007 | |
Published online | 10 March 2025 |
- Borger, V., Hamed, M., Bahna, M., et al. (2022) Temporal lobe epilepsy surgery: Piriform cortex resection impacts seizure control in the long-term. Ann. Clin. Transl. Neur., 9: 1206–1211. [CrossRef] [Google Scholar]
- Banerjee, J., Srivastava, A., Sharma, D., et al. (2021) Differential regulation of excitatory synaptic transmission in the hippocampus and anterior temporal lobe by cyclin dependent kinase 5 (Cdk5) in mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS). doi: 10.1016/j.neulet.2021.136096. [Google Scholar]
- Gleichgerrcht, E., Keller, S.S., Drane, D.L., et al. (2020) Temporal lobe epilepsy surgical outcomes can be inferred based on structural connectome hubs:a machine learning study. Ann. Neurol., 88: 970–983. [CrossRef] [PubMed] [Google Scholar]
- Colgin, L.L. (2016) Rhythms of the hippocampal network. Nat. Rev. Neurosci., 17: 239–249. [CrossRef] [PubMed] [Google Scholar]
- Connolly, M.J., Jiang, S.J., Samuel, L.C., et al. (2024) Seizure onset and offset pattern determine the entrainment of the cortex and substantia nigra in the nonhuman primate model of focal temporal lobe seizures. Plos. One., doi: 10.1371/journal.pone.0307906. [Google Scholar]
- Sobstyl, M., Konopko, M., Wierzbicka, A., et al. (2024) Deep brain stimulation of hippocampus in treatment of refractory temporal lobe epilepsy. Neurol. Neurochir. Pol., 58: 393–404. [CrossRef] [PubMed] [Google Scholar]
- Fisher, R.S, Acevedo, C., Arzimanoglou, A., et al. (2014) ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia., 55: 475–482. [CrossRef] [PubMed] [Google Scholar]
- Zheng, C.G., Colgin, L.L. (2015) Beta and gamma rhythms go with the flow. Neuron., 85: 236–237. [CrossRef] [PubMed] [Google Scholar]
- Zhou, Q., Zhang, G.H., Wu, C.Z., et al. (2022) Application progress of diffusion weighted magnetic resonance imaging in epilepsy. Magn. Reson. Imaging., 13: 104–108. [Google Scholar]
- Park, K.M., Lee, B.I., Shin, K.J., et al. (2019) Pivotal role of subcortical structures as a network hub in focal epilepsy: Evidence from graph theoretical analysis based on diffusion-tensor imaging. J. Clin. Neurol., 15: 68–76. [CrossRef] [PubMed] [Google Scholar]
- Ikemoto, S., von Ellenrieder, N., Gotman, J. (2025) Interictal epileptiform discharge-related BOLD responses in the default mode network and subcortical regions. Clin. Neurophysiol., 170: 29–40. [CrossRef] [Google Scholar]
- Choi, E.B., Jang, S.H. (2020) Diffusion tensor imaging studies on recovery of injured optic radiation: minireview. Neural. Plast., doi: 10.1155/2020/8881224. [Google Scholar]
- Tae, W.S., Ham, B.J., Pyun, S.B., et al. (2018) Current clinical applications of Diffusion-Tensor imaging in neurological disorders. J. Clin. Neurol., 14: 129–140. [CrossRef] [PubMed] [Google Scholar]
- Ota, Y., Shah, G.R. (2022) Imaging of normal brain aging. Neuroimag. Clin. N. Am., 32: 683–698. [CrossRef] [Google Scholar]
- Sun, S., Tian, M., Lin, X., et al. (2024) Disturbed white matter integrity on diffusion tensor imaging in young children with epilepsy. Clin. Radiol., 79: e119–e126. [CrossRef] [Google Scholar]
- Papp, E.A., Leergaard, T.B., Calabrese, E., et al. (2014) Waxholm Space atlas of the Sprague Dawley rat brain. Neuroimage., 97: 374–386. [CrossRef] [PubMed] [Google Scholar]
- Konomi, T., Fujiyoshi, K., Hikishima, K., et al. (2012) Conditions for quantitative evaluation of injured spinal cord by in vivo diffusion tensor imaging and tractography: Preclinical longitudinal study in common marmosets. Neuroimage., 63: 1841–1853. [CrossRef] [PubMed] [Google Scholar]
- Foutch, K., Tilton, I., Cooney, A., et al. (2025) Adolescent seizure impacts oligodendrocyte maturation, neuronal-glial circuit Formation, and myelination in the mammalian forebrain. Neuroscience., 564: 144–159. [CrossRef] [PubMed] [Google Scholar]
- de Curtis, M., Garbelli, R., Uva, L. (2021) A hypothesis for the role of axon demyelination in seizure generation. Epilepsia., 62: 583–595. [CrossRef] [PubMed] [Google Scholar]
- Knowles, J.K., Xu, H., Soane, C., et al. (2022) Maladaptive myelination promotes generalized epilepsy progression. Nat. Neurosci., 25: 596–606. [CrossRef] [PubMed] [Google Scholar]
- Salimeen, M.S.A., Liu, C.C., Li, X.J., et al. (2021) Exploring variances of white matter integrity and the glymphatic system in simple febrile seizures and epilepsy. Front. Neurol., https://doi.org/10.3389/fneur.2021.595647. [Google Scholar]
- Ercan, K., Gunbey, H.P., Bilir, E., et al. (2016) Comparative lateralizing ability of multimodality MRI in temporal lobe epilepsy. Dis. Markers., doi: 10.1155/2016/5923243. [Google Scholar]
- Stasenko, A., Lin, C., Bonilha, L., et al. (2022) Neurobehavioral and clinical comorbidities in epilepsy: The role of white matter network disruption. Neuroscientist., 30: 105–131. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.