Open Access
Issue |
BIO Web Conf.
Volume 167, 2025
5th International Conference on Smart and Innovative Agriculture (ICoSIA 2024)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 12 | |
Section | Agricultural Big Data Analysis | |
DOI | https://doi.org/10.1051/bioconf/202516701004 | |
Published online | 19 March 2025 |
- United Nations, How Certain Are the United Nations Global Population Projections? (2019) [Google Scholar]
- L. Pan and M. Shan, Optimization of Sustainable Supply Chain Network for Perishable Products, Sustainability 16, 5003 (2024). doi.org/10.3390/su16125003 [Google Scholar]
- S. A. Osman, C. Xu, M. Akuful, and E. R. Paul, Perishable Food Supply Chain Management: Challenges and the Way Forward, Open Journal of Social Sciences 11, 349 (2023). doi.org/10.4236/jss.2023.117025 [Google Scholar]
- M. Ül Kirci, O. Isaksson, and R. Seifert, Managing Perishability in the Fruit and Vegetable Supply Chains, Sustain. 14, 1 (2022). doi.org/10.3390/su14095378 [CrossRef] [Google Scholar]
- J. Tavares, A. Martins, L. G. Fidalgo, V. Lima, R. A. Amaral, C. A. Pinto, A. M. Silva, and J. A. Saraiva, Fresh Fish Degradation and Advances in Preservation Using Physical Emerging Technologies, Foods 10, 780 (2021). doi.org/10.3390/foods10040780 [CrossRef] [PubMed] [Google Scholar]
- T. Ansari, M. Haji, L. Kerbache, and Muhammad, Roles of Technology in Improving Perishable Food, Logistics 4, 33 (2020). doi.org/10.3390/logistics4040033 [Google Scholar]
- Food and Agriculture Organization, The State of Food and Agriculture 2021 (2021) [Google Scholar]
- United Nations Environment Programme, Sustainable Food Cold Chains: Opportunities, Challenges and the Way Forward (2022) [Google Scholar]
- A. Friedman-Heiman and S. A. Miller, The impact of refrigeration on food losses and associated greenhouse gas emissions throughout the supply chain, Environ. Res. Lett. 19, (2024). doi.org/10.1088/1748-9326/ad4c7b [Google Scholar]
- H. Li and P. Pan, Food Waste in Developed Countries and Cold Chain Logistics, E3S Web of Conferences 251, 1 (2021). doi.org/10.1051/e3sconf/202125103001 [Google Scholar]
- A. Y. Cil, D. Abdurahman, and I. Cil, Internet of Things enabled real time cold chain monitoring in a container port, J. Shipp. Trade 7, 9 (2022). doi.org/10.1186/s41072-022-00110-z [Google Scholar]
- H. Zhou, Application of RFID Information Technology in Fresh Food Cold Chain Logistics Management, J. Phys. Conf. Ser. 1881, (2021). doi.org/10.1088/1742-6596/1881/3/032002 [Google Scholar]
- F. Vivaldi, B. Melai, A. Bonini, N. Poma, P. Salvo, A. Kirchhain, S. Tintori, A. Bigongiari, F. Bertuccelli, G. Isola, and F. Di Francesco, A temperature-sensitive RFID tag for the identification of cold chain failures, Sensors Actuators, A Phys. 313, (2020). doi.org/10.1016/j.sna.2020.112182 [Google Scholar]
- Pradana, T. Djatna, I. Hermadi, and I. Yuliasih, Blockchain-based Traceability System for Indonesian Coffee Digital Business Ecosystem, Int. J. Eng. Trans. B Appl. 36, 879 (2023). doi.org/10.5829/ije.2023.36.05b.05 [Google Scholar]
- C. Zheng, K. Sun, Y. Gu, J. Shen, and M. Du, Multimodal Transport Path Selection of Cold Chain Logistics Based on Improved Particle Swarm Optimization Algorithm, Journal of Advance Transportation 2022, (2022). doi.org/10.1155/2022/5458760 [Google Scholar]
- S. Zhu, H. Fu, and Y. Li, Optimization Research on Vehicle Routing for Fresh Agricultural Products Based on the Investment of FreshnessKeeping Cost in the Distribution Process, Sustain. 13, 8110 (2021). doi.org/10.3390/su13148110 [Google Scholar]
- J. Peng, Optimizing the transportation route of fresh food in cold chain logistics by improved genetic algorithms, Int. J. Metrol. Qual. Eng. 10, (2019). doi.org/10.1051/ijmqe/2019013 [Google Scholar]
- C. Kim and K. Shin, A Study on the Measurement Method of Cold Chain Service Quality Using Smart Contract of Blockchain J. Soc. E-Bus. Stud. 24, 1 (2019). doi.org/10.7838/jsebs.2019.24.3.001 [Google Scholar]
- S. Jagtap, F. Bader, G. Garcia-Garcia, H. Trollman, T. Fadiji, and K. Salonitis, Food Logistics 4.0: Opportunities and Challenges Logistics 5, 1 (2021). doi.org/10.3390/logistics5010002 [Google Scholar]
- I. Saputra, Y. Arkeman, I. Jaya, I. Hermadi, and I. Sutedja, Blockchain-based key-value store to support dynamic smart contract interaction in the agricultural sector, Indones. J. Electr. Eng. Comput. Sci. 33, 622 (2024). doi.org/10.11591/ijeecs.v33.i1.pp622-633 [Google Scholar]
- K. Włodarska, K. Pawlak-Lemańska, and E. Sikorska, NIR technology for non-destructive monitoring of apple quality during storage, Logforum 20, 11 (2024). doi.org/10.17270/J.LOG.000968 [Google Scholar]
- S. S. Mardjan and J. Indriyantoro, Detection of Chilling Injury Symptoms of Salak Pondoh Fruit during Cold Storage with Near Infrared Spectroscopy (NIRS) J. Ket. Pertan. 10, (2022). doi.org/10.19028/jtep.010.1.69-76 [Google Scholar]
- D. Pérez-Marín, L. Calero, T. Fearn, I. Torres, A. Garrido-Varo, and M. T. Sánchez, A system using in situ NIRS sensors for the detection of product failing to meet quality standards and the prediction of optimal postharvest shelf-life in the case of oranges kept in cold storage, Postharvest Bio. Tech. 147, 48 (2019). doi.org/10.1016/j.postharvbio.2018.09.009 [Google Scholar]
- N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, and W. M. Lim, How to conduct a bibliometric analysis: An overview and guidelines, Journal of Business Research 133, 285 (2021). doi.org/10.1016/j.jbusres.2021.04.070 [CrossRef] [Google Scholar]
- O. Öztürk, R. Kocaman, and D. K. Kanbach, How to design bibliometric research: an overview and a framework proposal, Review of Managerial Science (2024). doi.org/10.1007/s11846-024-00738-0 [Google Scholar]
- I. Passas, Bibliometric Analysis: The Main Steps, Encyclopedia 4, 1014 (2024). doi.org/10.3390/encyclopedia4020065 [Google Scholar]
- P. M. Hasugian and B. Nadeak, Bibliometric Analysis On Techniques for Data Visualization J. Info Sains: Inform. & Sains 14, 425 (2024). doi.org/10.58471/JIS.v13i01 [Google Scholar]
- M. Pournader, Y. Shi, S. Seuring, and S. C. L. Koh, Blockchain Applications in Supply Chains, Transport and Logistics: A Systematic Review of the Literature, International Journal of Production Research 58, 2063 (2020). doi.org/10.1080/00207543.2019.1650976 [Google Scholar]
- R. Jedermann, L. Ruiz-Garcia, and W. Lang, Spatial temperature profiling by semi-passive RFID loggers for perishable food transportation, Comput. Electron. Agric. 65, 145 (2009). //doi.org/10.1016/j.compag.2008.08.006 [Google Scholar]
- S. Wang, F. Tao, and Y. Shi, Optimization of Location-Routing Problem for Cold Chain Logistics Considering Carbon Footprint, Int. J. Environ. Res. Public Health 15, (2018). doi.org/10.3390/ijerph15010086 [Google Scholar]
- S. Wang, F. Tao, Y. Shi, and H. Wen, Optimization of Vehicle Routing Problem with Time Windows for Cold Chain Logistics Based on Carbon Tax, Sustain. 9, (2017). doi.org/10.3390/su9050694 [Google Scholar]
- B. Zhao, H. Gui, H. Li, and J. Xue, Cold Chain Logistics Path Optimization via Improved Multi-Objective Ant Colony Algorithm, IEEE Access 8, 142977 (2020). doi.org/10.1109/Access.2020.3013951 [CrossRef] [Google Scholar]
- G. Abramo, C. A. D’Angelo, and F. Viel, Assessing the accuracy of the h and g indexes for measuring researchers’ productivity, J. Am. Soc. Inf. Sci. Technol. 64, 1224 (2013). doi.org/10.48550/arXiv.1812.09241 [Google Scholar]
- F. Bresciani, T. Chalmers, D. Terzano, R. Gaiha, G. Thapa, and N. Kaicker, Outlook on Asia’s Agricultural and Rural Transformation: Prospects and Options for Making It an Inclusive and Sustainable One (2019) [Google Scholar]
- R. Xie, H. Huang, Y. Zhang, and P. Yu, Coupling relationship between cold chain logistics and economic development: A investigation from China, Plos 17, 1 (2022). doi.org/10.1371/journal.pone.0264561 [Google Scholar]
- Z. Xujun and W. Yuede, Research on the Development of Cold Chain Logistics in China and Countermeasures in the Post-Epidemic Era, J. Waste Manag. Recycl. Technol. 1, 1 (2023). doi.org/10.47363/JWMRT/2023(1)114 [Google Scholar]
- S. Verma and A. Gustafsson, Investigating the Emerging COVID-19 Research Trends in the Field of Business and Management: A Bibliometric Analysis Approach, Journal of Business Research 118, 253 (2020). doi.org/10.1016/j.jbusres.2020.06.057 [CrossRef] [PubMed] [Google Scholar]
- A. Klarin, How to conduct a bibliometric content analysis: Guidelines and contributions of content co-occurrence or co-word literature reviews, Int. J. Consum. Stud. 48, 1 (2024). doi.org/10.1111/ijcs.13031 [Google Scholar]
- H. Niu, X. Liu, B. Wang, and W. Shi, Development, research and policy status of logistics cold storage in the context of carbon neutrality, Energy Buildings. 320, 114606 (2024). doi.org/10.1016/j.enbuild.2024.114606 [Google Scholar]
- J. Qian, Q. Yu, L. Jiang, H. Yang, and W. Wu, Food cold chain management improvement: A conjoint analysis on COVID-19 and food cold chain systems, Food Control 137, 1 (2022). doi.org/10.1016/j.foodcont.2022.108940 [Google Scholar]
- G. Hu, X. Mu, M. Xu, and S. A. Miller, Potentials of GHG emission reductions from cold chain systems: case studies of China and the United States, J. Cleaner Prod. 239, 1 (2019). doi.org/10.1016/j.jclepro.2019.118053 [Google Scholar]
- J. Qian, L. Ruiz-Garcia, B. Fan, J. I. Robla Villalba, U. McCarthy, B. Zhang, Q. Yu, and W. Wu, Food traceability system from governmental, corporate, and consumer perspectives in the European Union and China: A comparative review, Trends Food Science and Technology 99, 402 (2020). doi.org/10.1016/j.tifs.2020.03.025 [CrossRef] [Google Scholar]
- L. Yang, J. Zhang, and X. Shi, Can blockchain help food supply chains with platform operations during the COVID-19 outbreak? Electron. Commer. Res. Appl. 49, 1 (2021). doi.org/10.1016/j.elerap.2021.101093 [Google Scholar]
- Z. Musa and K. Vidyasankar, A Fog Computing Framework for Blackberry Supply Chain Management, Procedia Comput. Sci. 113, 178 (2017). doi.org/10.1016/j.procs.2017.08.338 [Google Scholar]
- Y. Shi, Y. Lin, M. K. Lim, M. L. Tseng, C. Tan, and Y. Li, An intelligent green scheduling system for sustainable cold chain logistics, Expert Syst. Appl. 209, (2022). doi.org/10.1016/j.eswa.2022.118378 [Google Scholar]
- L. Y. Zhang, M. L. Tseng, C. H. Wang, C. Xiao, and T. Fei, Low-carbon cold chain logistics using ribonucleic acid-ant colony optimization algorithm, J. Clean. Prod. 233, 169 (2019). doi.org/10.1016/j.jclepro.2019.05.306 [Google Scholar]
- G. Liu, J. Hu, Y. Yang, S. Xia, and M. K. Lim, Vehicle routing problem in cold Chain logistics: A joint distribution model with carbon trading mechanisms, Resources Conservation and Recycling 156, 104715 (2020). doi.org/10.1016/j.resconrec.2020.104715 [Google Scholar]
- G. Qin, F. Tao, and L. Li, A Vehicle Routing Optimization Problem for Cold Chain Logistics Considering Customer Satisfaction and Carbon Emissions, Int. J. Environ. Res. Public Health 16, (2019). doi.org/10.3390/ijerph16040576w [Google Scholar]
- L. Shen, F. Tao, and S. Wang, Multi-Depot Open Vehicle Routing Problem with Time Windows Based on Carbon Trading, Int. J. Environ. Res. Public Health 15, (2018). doi.org/10.3390/ijerph15092025w [Google Scholar]
- L. Leng, C. Zhang, Y. Zhao, W. Wang, J. Zhang, and G. Li, Biobjective low-carbon location-routing problem for cold chain logistics: Formulation and heuristic approaches, J. Clean. Prod. 273, 122801 (2020). doi.org/10.1016/j.jclepro.2020.122801 [Google Scholar]
- X. Wang, H. Feng, T. Chen, S. Zhao, J. Zhang, and X. Zhang, Gas sensor technologies and mathematical modelling for quality sensing in fruit and vegetable cold chains: A review, Trends Food Sci. Technol. 110, 483 (2021). doi.org/10.1016/j.tifs.2021.01.073 [CrossRef] [Google Scholar]
- K. Liu and C. Zhang, Volatile Organic Compounds Gas Sensor Based on Quartz Crystal Microbalance for Fruit Freshness Detection: A Review, Food Chem. 334 (2021). doi.org/10.1016/j.foodchem.2020.127615 [Google Scholar]
- B. Hu, D. W. Sun, H. Pu, and Q. Wei, Recent Advances in Detecting and Regulating Ethylene Concentrations for Shelf-life Extension and Maturity Control of Fruit: A Review, Trends Food Sci. Technol. 91, 66 (2019). doi.org/10.1016/j.tifs.2019.06.010 [CrossRef] [Google Scholar]
- S. T. Narenderan, S. N. Meyyanathan, and B. Babu, Review of Pesticide Residue Analysis in Fruits and Vegetables. Pre-Treatment, Extraction and Detection Techniques, Food Research International 133 (2020). doi.org/10.1016/j.foodres.2020.109141 [Google Scholar]
- A. Babaei, M. Khedmati, M. R. Akbari Jokar, and E. B. Tirkolaee, Designing an integrated blockchain-enabled supply chain network under uncertainty, Sci. Rep. 13, 1 (2023). doi.org/10.1038/s41598-023-30439-9 [CrossRef] [Google Scholar]
- L. Gozali, H. J. Kristina, A. Yosua, T. Y. M. Zagloel, M. Masrom, S. Susanto, H. Tanujaya, A. P. Irawan, A. Gunadi, V. Kumar, J. A. Garza-Reyes, T. B. Jap, and F. J. Daywin, The improvement of block chain technology simulation in supply chain management (case study: pesticide company), Sci. Rep. 14, 1 (2024). doi.org/10.1038/s41598-024-53694-w [CrossRef] [Google Scholar]
- T. T. Baladraf, Potential Application of Digital twin Technology in Agriculture and Food Industry in Indonesia: A Literature Review, Jurnal Teknotan 18, 21 (2024), doi.org/10.24198/jt.vol18n1.4 [Google Scholar]
- J. Mwangi, Analyzing the Role of Artificial Intelligence and Machine Learning in Optimizing Supply Chain Processes in Kenya, Int. J. Supply Chain Manag. 9, 39 (2024). doi.org/10.47604/ijscm.2322 [Google Scholar]
- M. Zhang and C. S. Liu, Cost simulation and optimization of fresh cold chain logistics enterprises based on SD, IOP Conf. Ser. Mater. Sci. Eng. 392, (2018). doi.org/10.1088/1757-899X/392/6/062121 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.