Open Access
Issue |
BIO Web Conf.
Volume 167, 2025
5th International Conference on Smart and Innovative Agriculture (ICoSIA 2024)
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 21 | |
Section | Land and Environmental Management | |
DOI | https://doi.org/10.1051/bioconf/202516703002 | |
Published online | 19 March 2025 |
- Lee J. E., Jeon H.-J., Lee O.-J., Lim H. G., Diagnosis of diabetes mellitus using high frequency ultrasound and convolutional neural network. Ultrasonics. 136, 107167 (2024). [CrossRef] [Google Scholar]
- Sun H., Saeedi P., Karuranga S., Pinkepank M., Ogurtsova K., Duncan B.B., Stein C., Basit A., Chan J.C., Mbanya J.C., Pavkov, M.E., IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119 (2022). [Google Scholar]
- Attaallah R., Elfadil D., Amine A., Screening study of enzymatic inhibition of medicinal plants for the treatment of diabetes using a glucometer biosensor approach and optical method. J. Herb. Med. 28, 100441 (2021). [Google Scholar]
- Rohman A., Arifah F. H., Alam G., Rafi M., A review on phytochemical constituents, role on metabolic diseases, and toxicological assessments of underutilized part of Garcinia mangostana L. fruit. J. Appi. Pharm. Sci. 10, 127–146 (2020). [Google Scholar]
- Xie X., Chen C., Fu X., Modulation Effects of Sargassum pallidum Extract on Hyperglycemia and Hyperlipidemia in Type 2 Diabetic Mice. Foods. 12, (2023). [Google Scholar]
- Puhari S. S. M. et al. Fucoidan from Sargassum wightii reduces oxidative stress through upregulating Nrf2/HO-1 signaling pathway in alloxan-induced diabetic cardiomyopathy rats. Mol. Biol. Rep. 50, 8855–8866 (2023). [Google Scholar]
- Paramasivam D., et al. Marine brown algae (Sargassum wightii) derived 9- hydroxyhexadecanoic acid: A promising inhibitor of a-amylase and a-glucosidase with mechanistic insights from molecular docking and its non-target toxicity analysis. South African J. Bot. 161, 627637 (2023). [Google Scholar]
- Lee Y.-H., et al. Anti-Diabetic Potential of Sargassum horneri and Ulva australis Extracts In Vitro and In Vivo. Curr. Issues Mol. Biol. 45, 7492–7512 (2023). [Google Scholar]
- Bamel U. K., Pandey R., Gupta A., Safety climate: Systematic literature network analysis of 38 years (1980-2018) of research. Accid. Anal. Prev. 135, 105387 (2020). [CrossRef] [Google Scholar]
- Yeung A. W. K., Heinrich M., Atanasov, A. G., Ethnopharmacology—a bibliometric analysis of a field of research meandering between medicine and food science. Front. Pharmacol. 9, 215 (2018). [Google Scholar]
- Elisha I. L., Viljoen A., Trends in Rooibos Tea (Aspalathus linearis) research (1994-2018): A scientometric assessment. South African J. Bot. 137, 159–170 (2021). [Google Scholar]
- Samudra A. G., Nugroho, A. E., Murwanti, R., Review of the pharmacological properties of marine macroalgae used in the treatment of diabetes mellitus in Indonesia. in Annales Pharmaceutiques Françaises (Elsevier, 2024). [Google Scholar]
- Yu Y., et al. A bibliometric analysis using VOSviewer of publications on COVID-19. Ann. Transl. Med. 8, 816 (2020). [CrossRef] [Google Scholar]
- Aria M., Cuccurullo C., Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 11, 959–975 (2017). [CrossRef] [Google Scholar]
- Ramamoorthi R., Gahreman D., Skinner T., Moss S., Bibliometric Profile and Density Visualizing Analysis of Yoga Intervention in Type 2 Diabetes: A 44 - Year Study on Global Scientific Research Output from 1975 to 2019. Int. J. Yoga. 14, 89–99 (2021). [Google Scholar]
- Yeung A. W. K., Mocan A., Atanasov A. G., Let food be the medicine and medicine be the food: A bibliometric analysis of the most cited papers focusing on nutraceuticals and functional foods. Food Chem. 269, 455–465 (2018). [Google Scholar]
- Kim S.N., et al. Sargaquinoic acid and sargahydroquinoic acid from Sargassum yezoense stimulate adipocyte differentiation through PPARö/y activation in 3T3-L1 cells. FEBS Lett. 582, 3465–3472 (2008). [CrossRef] [PubMed] [Google Scholar]
- Husni A., Pratiwi T., Samudra A. G., Nugroho A. E., In vitro antidiabetic activity of Sargassum hystrix and Eucheuma denticulatum from Yogyakarta Beach of Indonesia: Antidiabetic activity of S. hystrix and E. denticulatum. Proc. Pakistan Acad. Sci. B. Life Environ. Sci. 55, 1–8 (2018). [Google Scholar]
- Raji V., Loganathan C., Ramesh T., Thayumanavan P., Dual antidiabetic and antihypertensive activity of fucoxanthin isolated from Sargassum wightii Greville in in vivo rat model. Food Sci. Hum. Wellness. 12, 1693–1700 (2023). [Google Scholar]
- Liu J., et al., Sargassum fusiforme alginate relieves hyperglycemia and modulates intestinal microbiota and metabolites in type 2 diabetic mice. Nutrients 13, (2021). [Google Scholar]
- Vijay N. K. G., Vellapandian C., Ameliorative effects of phlorotannin-rich fraction of Sargassum tenerrimum in high-fat diet and low dose streptozotocin-induced metabolic changes and oxidative stress in diabetic rats. J. HerbMed Pharmacol. 12, 367–379 (2023). [Google Scholar]
- Samudra A. G., et al., Antihyperglycemic activity of nanoemulsion of brown algae (Sargassum sp.). Ethanol extract in glucose tolerance test in male mice. Ann. Pharm. Fr. 81, 484–491 (2023). [Google Scholar]
- Gheda S., et al., Potent Effect of Phlorotannins Derived from Sargassum linifolium as Antioxidant and Antidiabetic in a Streptozotocin-Induced Diabetic Rats Model. Appl. Sci. 13, (2023). [Google Scholar]
- Moheimanian N., Mirkhani H., Purkhosrow A., Sohrabipour J., Jassbi A. R., In Vitro and In Vivo Antidiabetic, a-Glucosidase Inhibition and Antibacterial Activities of Three Brown Algae, Polycladia myrica, Padina antillarum, and Sargassum boveanum, and a Red Alga, Palisada perforata from the Persian Gulf. Iran. J. Pharm. Res. 22, (2023). [Google Scholar]
- Park J.-W., Kang K. S., Ha I. S., Lee S. I., Shin S., Efficacy of fucoxanthin extract from Sargassum horneri on 3T3-L1 pre-adipocyte differentiation. Cell. Mol. Biol. 69, 8–11 (2023). [Google Scholar]
- Arguelles E. D., Preliminary Studies on the Potential Antioxidant and Antidiabetic Activities of Sargassum polycystum C. Agardh (Phaeophyceae, Ochrophyta). Jordan J. Biol. Sci. 15, 449–456 (2022). [Google Scholar]
- Moheimanian N., Mirkhani H., Sohrabipour J., Jassbi, A. R., Inhibitory Potential of Six Brown Algae from the Persian Gulf on a-Glucosidase and In Vivo Antidiabetic Effect of Sirophysalis Trinodis. Iran. J. Med. Sci. 47, 484–493 (2022). [Google Scholar]
- Jia R.-B. et al., The Beneficial Effects of Two Polysaccharide Fractions from Sargassum fusiform against Diabetes Mellitus Accompanied by Dyslipidemia in Rats and Their Underlying Mechanisms. Foods 11, (2022). [Google Scholar]
- Un S. et al., Effects of In Vitro Digestion on Antia-Amylase and Cytotoxic Potentials of Sargassum spp. Molecules. 27, (2022). [Google Scholar]
- Firdaus M. et al., The glucose uptake of type 2 diabetic rats by Sargassum olygocystum extract: In silico and in vivo studies. J. Appl. Pharm. Sci. 12, 132–139 (2022). [Google Scholar]
- Zhang M., Yang R., Yu S., Zhao W., A novel a- glucosidase inhibitor polysaccharide from Sargassum fusiforme. Int. J. Food Sci. Technol. 57, 67–77 (2022). [Google Scholar]
- Lindsey A. et al., Evaluation of Antidiabetic Activity of Sargassum tenerrimum in Streptozotocin-Induced Diabetic Mice. J. Pure Appl. Microbiol. 15, (2021). [Google Scholar]
- Barbosa M., Fernandes F., Carlos M. J., Valentão P., Andrade P. B., Adding value to marine invaders by exploring the potential of Sargassum muticum (Yendo) Fensholt phlorotannin extract on targets underlying metabolic changes in diabetes. Algal Res. 59, (2021). [Google Scholar]
- Wu S., et al., Ethanol extract of Sargarsum fusiforme alleviates HFD/STZ-induced hyperglycemia in association with modulation of gut microbiota and intestinal metabolites in type 2 diabetic mice. Food Res. Int. 147, (2021). [Google Scholar]
- Oliyaei N., Moosavi-Nasab M., Tamaddon A. M., Tanideh N., Antidiabetic effect of fucoxanthin extracted from Sargassum angustifolium on streptozotocin-nicotinamide-induced type 2 diabetic mice. Food Sci. Nutr. 9, 3521–3529 (2021). [CrossRef] [Google Scholar]
- Li Z.-R., et al., Sargassum fusiforme polysaccharide partly replaces acarbose against type 2 diabetes in rats. Int. J. Biol. Macromol. 170, 447–458 (2021). [Google Scholar]
- Murakami S. et al., The edible brown seaweed Sargassum horneri (Turner) C. agardh ameliorates high-fat diet-induced obesity, diabetes, and hepatic steatosis in mice. Nutrients. 13, 1–14 (2021). [Google Scholar]
- Lee Y.-H., et al., Effects of Sargassum horneri and Ulva australis extracts on body weight and serum glucose levels of sprague-dawley rats. Prev. Nutr. Food Sci. 26, 307–314 (2021). [Google Scholar]
- Renitta R. E., Narayanan R., Cypriyana P.J., Samrot A. V., Antidiabetic potential of methanolic extracts of Sargassum wightii in streptozotocin induced diabetic mice. Biocatal. Agric. Biotechnol. 28, (2020). [Google Scholar]
- Jia R.-B., et al., Structural characterization of polysaccharides from three seaweed species and their hypoglycemic and hypolipidemic activities in type 2 diabetic rats. Int. J. Biol. Macromol. 155, 1040–1049 (2020). [Google Scholar]
- Jia R.B., et al., Physicochemical properties of polysaccharide fractions from Sargassum fusiforme and their hypoglycemic and hypolipidemic activities in type 2 diabetic rats. Int. J. Biol. Macromol. 147, 428–438 (2020). [Google Scholar]
- Wei B., et al., Sargassum fusiforme polysaccharides prevent high-fat diet-induced early fasting hypoglycemia and regulate the gut microbiota composition. Mar. Drugs. 18, (2020). [Google Scholar]
- Nasab S. B., Homaei A., Karami, L., Kinetic of a- amylase inhibition by Gracilaria corticata and Sargassum angustifolium extracts and zinc oxide nanoparticles. Biocatal. Agric. Biotechnol. 23, (2020). [Google Scholar]
- Chin Y. X. et al. Characterization of seaweed hypoglycemic property with integration of virtual screening for identification of bioactive compounds. J. Funct. Foods. 64, (2020). [Google Scholar]
- Ismail, G. A., Gheda, S. F., Abo-Shady, A. M., Abdel-Karim, O. H. In vitro potential activity of some seaweeds as antioxidants and inhibitors of diabetic enzymes. Food Sci. Technol. 40, 681–691 (2019). [Google Scholar]
- Cao, C. et al. Physicochemical characterization, potential antioxidant and hypoglycemic activity of polysaccharide from Sargassum pallidum. Int. J. Biol. Macromol. 139, 1009–1017 (2019). [Google Scholar]
- Yang, C.-F. et al. Anti-diabetic effect of oligosaccharides from seaweed Sargassum confusum via JNK-IRS1/PI3K signalling pathways and regulation of gut microbiota. Food Chem. Toxicol. 131, (2019). [Google Scholar]
- Cheng, Y. et al. Sargassum fusiforme fucoidan modifies the gut microbiota during alleviation of streptozotocin-induced hyperglycemia in mice. Int. J. Biol. Macromol. 131, 1162–1170 (2019). [Google Scholar]
- Xiao, H. et al. Sulfated modification, characterization, antioxidant and hypoglycemic activities of polysaccharides from Sargassum pallidum. Int. J. Biol. Macromol. 121, 407–414 (2019). [Google Scholar]
- Gotama, T. L., Husni, A. Antidiabetic activity of Sargassum hystrix extracts in streptozotocin- induced diabetic rats. Prev. Nutr. Food Sci. 23, 189–195 (2018). [Google Scholar]
- Lee, J.-S., Han, J.-S. Sargassum sagamianum extract alleviates postprandial hyperglycemia in diabetic mice. Prev. Nutr. Food Sci. 23, 122–126 (2018). [Google Scholar]
- Nurfahmi, A. R., Husni, A., Isnansetyo, A. Effect of Sargassum hystrix powder on the biochemical profile of diabetic wistar rats. Pakistan J. Nutr. 17, 248–254 (2018). [CrossRef] [Google Scholar]
- Zaharudin, N., Salmeán, A. A., Dragsted, L. O. Inhibitory effects of edible seaweeds, polyphenolics and alginates on the activities of porcine pancreatic a-amylase. Food Chem. 245, 1196–1203 (2018). [Google Scholar]
- Cao, C., Huang, Q., Zhang, B., Li, C., Fu, X. Physicochemical characterization and in vitro hypoglycemic activities of polysaccharides from Sargassum pallidum by microwave-assisted aqueous two-phase extraction. Int. J. Biol. Macromol. 109, 357–368 (2018). [Google Scholar]
- Akbarzadeh, S. et al. Anti-diabetic effects of Sargassum oligocystum on Streptozotocin- induced diabetic rat. Iran. J. Basic Med. Sci. 21, 342–346 (2018). [Google Scholar]
- Kwon, M., Lim, S.-J., Lee, B., Shin, T., Kim, H.-R. Ethanolic extract of Sargassum serratifolium inhibits adipogenesis in 3T3-L1 preadipocytes by cell cycle arrest. J. Appl. Phycol. 30, 559–568 (2018). [Google Scholar]
- Firdaus, M., Chamidah, A. Sargassum polycystum methanol extract affects the nuclear factor-k beta and interleukin-6 expression in streptozotocin- induced diabetes rats. Asian J. Pharm. Clin. Res. 11, 337–339 (2018). [CrossRef] [Google Scholar]
- Ali, Y. et al. A-Glucosidase and protein tyrosine phosphatase 1b inhibitory activity of plastoquinones from marine brown alga Sargassum serratifolium. Mar. Drugs. 15, (2017). [Google Scholar]
- Maneesh, A., Chakraborty, K. Previously undescribed fridooleanenes and oxygenated labdanes from the brown seaweed Sargassum wightii and their protein tyrosine phosphatase-1B inhibitory activity. Phytochemistry 144, 19–32 (2017). [Google Scholar]
- Pirian, K., Moein, S., Sohrabipour, J., Rabiei, R., Blomster, J. Antidiabetic and antioxidant activities of brown and red macroalgae from the Persian Gulf. J. Appl. Phycol. 29, 3151–3159 (2017). [Google Scholar]
- Ren, B. et al. Optimization of microwave-assisted extraction of Sargassum thunbergii polysaccharides and its antioxidant and hypoglycemic activities. Carbohydr. Polym. 173, 192–201 (2017). [Google Scholar]
- Park, J.-E., Lee, J.-H., Han, J.-S. Sargassum yezoense extract inhibits carbohydrate digestive enzymes in vitro and alleviates postprandial hyperglycemia in diabetic mice. Prev. Nutr. Food Sci. 22, 166–171 (2017). [Google Scholar]
- Yang, C. et al. The antidiabetic activity of brown seaweed Sargassum confusum polysaccharide hydrolysates in insulin resistance HepG2 cells in vitro. Res. J. Biotechnol. 12, 1–9 (2017). [Google Scholar]
- Dhas, T. S. et al. Effect of biosynthesized gold nanoparticles by Sargassum swartzii in alloxan induced diabetic rats. Enzyme Microb. Technol. 95, 100–106 (2016). [Google Scholar]
- Oh, J.-H., Kim, J., Lee, Y. Anti-inflammatory and anti-diabetic effects of brown seaweeds in high-fat diet-induced obese mice. Nutr. Res. Pract. 10, 4248 (2016). [Google Scholar]
- Husni, A., Anggara, F. P., Isnansetyo, A., Nugroho, A. E. Blood glucose level and lipid profile of streptozotozin-induced diabetic rats treated with Sargassum polystum extract. Int. J. Pharm. Clin. Res. 8, 445–450 (2016). [Google Scholar]
- Husni, A., Purwanti, D., Ustadi. Blood Glucose Level and Lipid Profile of Streptozotocin-induced Diabetes Rats Treated with Sodium Alginate from Sargassum crassifolium. J. Biol. Sci. 16, 58–64 (2016). [Google Scholar]
- Lakshmana Senthil, S. et al. Fucoidan - An a- amylase inhibitor from Sargassum wightii with relevance to NIDDM. Int. J. Biol. Macromol. 81, 644–647 (2015). [Google Scholar]
- Chin, Y. X. et al. Anti-diabetic potential of selected Malaysian seaweeds. J. Appl. Phycol. 27, 2137–2148 (2015). [Google Scholar]
- Hwang, P.-A., Hung, Y.-L., Tsai, Y.-K., Chien, S.-Y., Kong, Z.-L. The brown seaweed Sargassum hemiphyllum exhibits a-amylase and a- glucosidase inhibitory activity and enhances insulin release in vitro. Cytotechnology. 67, 653660 (2015). [Google Scholar]
- Park, M. H., Nam, Y. H., Han, J.-S. Sargassum coreanum extract alleviates hyperglycemia and improves insulin resistance in db/db diabetic mice. Nutr. Res. Pract. 9, 472–479 (2015). [Google Scholar]
- Payghami, N. et al. Alpha-amylase inhibitory activity and sterol composition of the marine algae, Sargassum glaucescens. Pharmacognosy Res. 7, 314–321 (2015). [Google Scholar]
- Vinoth Kumar, T. et al. Fucoidan - A a-d- glucosidase inhibitor from Sargassum wightii with relevance to type 2 diabetes mellitus therapy. Int. J. Biol. Macromol. 72, 1044–1047 (2015). [Google Scholar]
- Motshakeri, M. et al. Effects of brown seaweed (Sargassum polycystum) extracts on kidney, liver, and pancreas of type 2 diabetic rat model. Evidence-based Complement. Altern. Med. 2014, (2014). [Google Scholar]
- Selvaraj, S., Palanisamy, S. Investigations on the anti-diabetic potential of novel marine seaweed Sargassum longiotom against alloxan-induced diabetes mellitus: A pilot study. Bangladesh J. Pharmacol. 9, 194–197 (2014). [Google Scholar]
- Motshakeri, M., Ebrahimi, M., Goh, Y. M., Matanjun, P., Mohamed, S. Sargassum polycystum reduces hyperglycaemia, dyslipidaemia and oxidative stress via increasing insulin sensitivity in a rat model of type 2 diabetes. J. Sci. Food Agric. 93, 1772–1778 (2013). [Google Scholar]
- Lee, C.-W., Han, J.-S. Hypoglycemic effect of Sargassum ringgoldianum extract in STZ-induced diabetic mice. Prev. Nutr. Food Sci. 17, 8–13 (2012). [Google Scholar]
- Kim, S.-N., Lee, W., Bae, G.-U., Kim, Y. K. Antidiabetic and hypolipidemic effects of Sargassum yezoense in db/db mice. Biochem. Biophys. Res. Commun. 424, 675–680 (2012). [Google Scholar]
- Hanefeld, M. The Role of Acarbose in the Treatment of Non-Insulin-Dependent Diabetes Mellitus. J. Diabetes Complications. 12, 228–237 (1998). [Google Scholar]
- Kawamura-Konishi, Y. et al. Isolation of a new phlorotannin, a potent inhibitor of carbohydratehydrolyzing enzymes, from the brown alga Sargassum patens. J. Agric. Food Chem. 60, 5565–5570 (2012). [Google Scholar]
- Kim, J. S. Effect of Rhemanniae radix on the hyperglycemic mice induced with streptozotocin. J. Korean Soc. Food Sci. Nutr. (2004). [Google Scholar]
- Kwon, M.-J., Nam, T.-J. Porphyran induces apoptosis related signal pathway in AGS gastric cancer cell lines. Life Sci. 79, 1956–1962 (2006). [Google Scholar]
- Min, K.-H., Kim, H.-J., Jeon, Y.-J., Han, J.-S. Ishige okamurae ameliorates hyperglycemia and insulin resistance in C57BL/KsJ-db/db mice. Diabetes Res. Clin. Pract. 93, 70–76 (2011). [Google Scholar]
- Pushpamali, W. A. et al. Isolation and purification of an anticoagulant from fermented red seaweed Lomentaria catenata. Carbohydr. Polym. 73, 274279 (2008). [Google Scholar]
- Watanabe, J., Kawabata, J., Kurihara, H., Niki, R. Isolation and Identification of a-Glucosidase Inhibitors from Tochu-cha (Eucommia ulmoides). Biosci. Biotechnol. Biochem. 61, 177–178 (1997). [Google Scholar]
- Heo, S.-J., Park, E.-J., Lee, K.-W., Jeon, Y.-J. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour. Technol. 96, 16131623 (2005). [Google Scholar]
- Kopelman, P. G. Obesity as a medical problem. Nature. 404, 635–643 (2000). [Google Scholar]
- MacArtain, P., Gill, C. I. R., Brooks, M., Campbell, R., Rowland, I. R. Nutritional Value of Edible Seaweeds. Nutr. Rev. 65, 535–543 (2007). [Google Scholar]
- Nwosu, F. et al. Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem. 126, 1006–1012 (2011). [CrossRef] [Google Scholar]
- Patel, S. Therapeutic importance of sulfated polysaccharides from seaweeds: updating the recent findings. 3 Biotech 2, 171–185 (2012). [Google Scholar]
- Wei, Y., Li, Z., Hu, Y., Xu, Z. Inhibition of mouse liver lipid peroxidation by high molecular weight phlorotannins from Sargassum kjellmanianum. J. Appl. Phycol. 15, 507–511 (2003). [Google Scholar]
- Organization, W. H. WHO Global report on diabetes. (2016). [Google Scholar]
- Kavishankar, G. B., Lakshmidevi, N. Anti-diabetic effect of a novel N-Trisaccharide isolated from Cucumis prophetarum on streptozotocin- nicotinamide induced type 2 diabetic rats. Phytomedicine. 21, 624–630 (2014). [Google Scholar]
- Moller, D. E. New drug targets for type 2 diabetes and the metabolic syndrome. Nature 414, 821–827 (2001). [Google Scholar]
- Tomkin, G. H. Targets for Intervention in Dyslipidemia in Diabetes. Diabetes Care 31, S241–S248 (2008). [Google Scholar]
- Zhang, J. et al. Antidiabetic properties of polysaccharide- and polyphenolic-enriched fractions from the brown seaweed Ascophyllum nodosum This article is one of a selection of papers published in this special issue (part 2 of 2) on the Safety and Efficacy of Natural Healt. Can. J. Physiol. Pharmacol. 85, 1116–1123 (2007). [Google Scholar]
- Kamei, Y., Tsang, C. K. Sargaquinoic acid promotes neurite outgrowth via protein kinase A and MAP kinases-mediated signaling pathways in PC12D cells. Int. J. Dev. Neurosci. 21, 255–262 (2003). [Google Scholar]
- Lee, S.-H., Jeon, Y.-J. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia. 86, 129–136 (2013). [CrossRef] [Google Scholar]
- Liu, L., Heinrich, M., Myers, S., Dworjanyn, S. A. Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: A phytochemical and pharmacological review. J. Ethnopharmacol. 142, 591–619 (2012). [Google Scholar]
- Szkudelski, T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 50, 537–546 (2001). [Google Scholar]
- Gupta, S., Abu-Ghannam, N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Technol. 22, 315–326 (2011). [CrossRef] [Google Scholar]
- Kellogg, J., Grace, M. H., Lila, M. A. Phlorotannins from Alaskan seaweed inhibit carbolytic enzyme activity. Mar. Drugs 12, 52775294 (2014). [Google Scholar]
- Reddy, P., Urban, S. Meroditerpenoids from the southern Australian marine brown alga Sargassum fallax. Phytochemistry 70, 250–255 (2009). [Google Scholar]
- Ezugwu, A. E. et al. Automatic clustering algorithms: a systematic review and bibliometric analysis of relevant literature. Neural Comput. Appl. 33, 6247–6306 (2021). [Google Scholar]
- Shiau, W.-L., Dwivedi, Y. K., Yang, H. S. Cocitation and cluster analyses of extant literature on social networks. Int. J. Inf. Manage. 37, 390–399 (2017). [Google Scholar]
- Cheng, K.-H., Tang, K.-Y., Tsai, C.-C. The mainstream and extension of contemporary virtual reality education research: Insights from a cocitation network analysis (2015-2020). Educ. Technol. Res. Dev. 70, 169–184 (2022). [CrossRef] [Google Scholar]
- Grames, E. M., Stillman, A. N., Tingley, M. W., Elphick, C. S. An automated approach to identifying search terms for systematic reviews using keyword co-occurrence networks. Methods Ecol. Evol. 10, 1645–1654 (2019). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.