Open Access
Issue |
BIO Web Conf.
Volume 167, 2025
5th International Conference on Smart and Innovative Agriculture (ICoSIA 2024)
|
|
---|---|---|
Article Number | 06003 | |
Number of page(s) | 22 | |
Section | Smart Genetics Resource Management and Utilization | |
DOI | https://doi.org/10.1051/bioconf/202516706003 | |
Published online | 19 March 2025 |
- K. Lu, M. Zhou, Y. Ding, R. Zang, J. Yao, Y. Luo, D. Yan, Regeneration characteristics and influencing factors of woody plant on natural evergreen secondary broad-leaved forests in the subtropical, China. Glob. Ecol. Conserv. 42, e02394 (2023). doi.org/10.1016/j.gecco.2023.e02394 [Google Scholar]
- J. Rodríguez-Souilla, J.M. Cellini, M.V. Lencinas, F.A. Roig, J.E. Chaves, M.C.A. Acuña, G.J.M. Pastur, Variable retention harvesting and climate variations influence over natural regeneration dynamics in Nothofagus pumilio forests of Southern Patagonia. For. Ecol. Manag. 544, 121221 (2023). doi.org/10.1016/j.foreco.2023.121221 [CrossRef] [Google Scholar]
- L.J. Wiechmann, M.T. Curzon, B.J. Palik, Response of natural tree regeneration to climate adaptation treatments in Pinus resinosa-dominated forests. For. Ecol. Manag. 523, 120499 (2022). doi.org/10.1016/j.foreco.2022.120499 [CrossRef] [Google Scholar]
- H. Cheng, X. Zhou, R. Dong, X. Wang, G. Liu, Q. Li, Natural vegetation regeneration facilitated soil organic carbon sequestration and microbial community stability in the degraded karst ecosystem. Catena 222, 106856 (2023). doi.org/10.1016/j.catena.2022.106856 [Google Scholar]
- R.D. Nyland, Silviculture: Concepts and Applications (3rd ed.). Waveland Press, pp. 65–91 (2016). ISBN 13: 978-1-4786-2714-2. [Google Scholar]
- C.L. Bartlick, J.I. Burton, C.R. Webster, R.E. Froese, Y.L. Dickinson, An experimental approach to identify drivers of tree regeneration diversity, composition, and heterogeneity in northern hardwood forests. For. Ecol. Manag. 546, 121320 (2023). doi.org/10.1016/j.foreco.2023.121320 [CrossRef] [Google Scholar]
- M. Schüle, G. Domes, C. Schwanitz, T. Heinken, Early natural tree regeneration after wildfire in a Central European Scots pine forest: Forest management, fire severity and distance matters. For. Ecol. Manag. 539, 120999 (2023). doi.org/10.1016/j.foreco.2023.120999 [CrossRef] [Google Scholar]
- P. Rautio, V. Hallikainen, S. Valkonen, J. Karjalainen, P. Puttonen, U. Bergsten, M. Hypponen, Manipulating overstory density and mineral soil exposure for optimal natural regeneration of Scots pine. For. Ecol. Manag. 539, 120996 (2023). doi.org/10.1016/j.foreco.2023.120996. [CrossRef] [Google Scholar]
- M. Renner, K. Rembold, A. Hemp, M. Fischer, Natural regeneration of woody plant species along an elevational and disturbance gradient at Mt. Kilimanjaro. For. Ecol. Manag. 520, 120404 (2022). doi.org/10.1016/j.foreco.2022.120404 [CrossRef] [Google Scholar]
- E. Rodríguez-García, V.M. Santana, J.A. Alloza, V.R. Vallejo, Predicting natural hyperdense regeneration after wildfires in Pinus halepensis (Mill.) forests using prefire site factors, forest structure and fire severity. For. Ecol. Manag. 512, 120164 (2022). doi.org/10.1016/j.foreco.2022.120164 [CrossRef] [Google Scholar]
- J. Cargill, E.J. van Etten, W.D. Stock, The influence of seed supply and seedbed on seedling recruitment in shelterwood-treated jarrah (Eucalyptus marginata) forest. For. Ecol. Manag. 432, 54–63 (2019). doi.org/10.1016/i.foreco.2018.09.008 [CrossRef] [Google Scholar]
- E.M.I. Mohammed, T.T. Hassan, E.A. Idris, T.D. Abdel-Magid, Tree population structure, diversity, regeneration status, and potential disturbances in Abu Gadaf natural reserved forest, Sudan. Environ. Chall. 5, 100366 (2021). [Google Scholar]
- S. Min, J. Huang, J. Bai, H. Waibel, Adoption of intercropping among smallholder rubber farmers in Xishuangbanna, China. Int. J. Agric. Sustain. 15, 223–237 (2017). doi.org/10.1080/14735903.2017.1315234 [Google Scholar]
- K.M. Becker, J.A. Lutz, Differences in regeneration niche mediate how disturbance severity and microclimate affect forest species composition. For. Ecol. Manag. 544, 121190 (2023). doi.org/10.1016/j.foreco.2023.121190 [CrossRef] [Google Scholar]
- N. Horstmann, A.C. Sevilha, D.L.M. Vieira, Graminoid-led natural regeneration of dry savannas after severe degradation. Ecol. Eng. 187, 106850 (2023). doi.org/10.1016/j.ecoleng.2022.106850 [CrossRef] [Google Scholar]
- W. Oliviera, O. Cruz-Neto, J.L.S. Silva, K.F. Rito, I.R. Leal, M. Tabarelli, A.V. Lopes, Chronic anthropogenic disturbances and aridity negatively affect specialized reproductive traits and strategies of edible fruit plant assemblages in a Caatinga dry forest. For. Ecol. Manag. 514, 120214 (2022). doi.org/10.1016/j.foreco.2022.120214 [CrossRef] [Google Scholar]
- K.J. Craft, M.V. Ashley, Landscape genetic structure of bur oak (Quercus macrocarpa) savannas in Illinois. For. Ecol. Manag. 239, 13–20 (2007). [CrossRef] [Google Scholar]
- A. Ensslin, O. Tschope. M. Burkart, J. Joshi, Fitness decline and adaptation to novel environments in ex situ plant collections: Current knowledge and future perspectives. Biol. Conserv. 192, 394–401 (2015). doi.org/10.1016/j.biocon.2015.10.012 [Google Scholar]
- F. Martello, J.S. dos Santos, C.M. Silva-Neto, C. Cássia-Silva, K.N. Siqueira, M.V.R. de Ataíde, R.G. Collevatti, Landscape structure shapes the diversity of plant reproductive traits in agricultural landscapes in the Brazilian Cerrado. Agric. Ecosyst. Environ. 341, 108216 (2023). doi.org/10.1016/j.agee.2022.108216 [CrossRef] [Google Scholar]
- Y.W.N. Ratnaningrum, S. Indrioko, E. Faridah, A. Syahbudin, Gene flow and selection evidence of sandalwood under various population structures in Gunung Sewu (Java, Indonesia), and its effect on genetic differentiation. Biodiversitas 18, 1493–1505 (2017). doi.org/10.13057/biodiv/d180427 [Google Scholar]
- Y.W.N. Ratnaningrum, S. Indrioko, E. Faridah, A. Syahbudin, The effects of population size on genetic variables and mating system of sandalwood in Gunung Sewu, Indonesia. Indo. J. Biotech. 20, 182–201 (2015). doi.org/10.22146/ijbiotech.24347 [Google Scholar]
- Y.W.N. Ratnaningrum, S. Indrioko, A. Kurniawan, A. Karrin, A.D.C. Putri, The genetic diversity and reproductive dynamics of sandalwood in Gunung Sewu (Java, Indonesia) in 2012-2019: designing conservation strategies in a continuous versus fragmented landrace. Biodiversitas 22, 3219–3229 (2021). doi.org/10.13057/biodiv/d220815 [Google Scholar]
- N. Krishnakumar, K.T. Parthiban, Flowering phenology and seed production of Santalum album L. Int. J. Curr. Microbiol. Appl. Sci. 6, 963–974 (2017). doi.org/10.20546/ijcmas.2017.605.106 [Google Scholar]
- T. Page, J. Doran, J. Tungon, M. Tabi, Restoration of Vanuatu sandalwood (Santalum austrocaledonicum) through participatory domestication. Aust. For. 83, 216–226 (2020). doi.org/10.1080/00049158.2020.1855382 [CrossRef] [Google Scholar]
- L. Haryjanto, A.I. Putri, N.K. Kartikawati, A. Nirsatmanto, S. Sunarti, T. Herawan, F. Lestari, A. Rimbawanto, Domestication, restoration and sustainable use of Indonesian sandalwood. Aust. For. 87, 49–59 (2024). doi.org/10.1080/00049158.2024.2306705 [CrossRef] [Google Scholar]
- T. Pullaiah, S.C. Das, V.A. Bapat, M.K. Swamy, V.D. Reddy, K.S.R. Murthy (eds.), Sandalwood: Silviculture, Conservation and Applications (Springer Nature Singapore Pte Ltd., Singapore, 2021). [Google Scholar]
- M.N. Rao, K.N. Ganeshaiah, R.U. Shaanker, Assessing threats and mapping sandal resources to identify genetic ‘hot-spot’ for in-situ conservation in peninsular India. Conserv. Genet. 8, 925–935 (2007). doi.org/10.1007/s10592-006-9247-1 [Google Scholar]
- A. Saputra, C. Gomez, D.S. Headmoko, J. Sartohadi, Coseismic landslide susceptibility assessment using Geographic Information System. Geoenv. Disasters (2016). doi.org/10.1186/s40677-016-0059-4 [Google Scholar]
- K.A. Sandeep, V. Rodrigues, S. Viswanath, A.K. Shukla, V. Sundaresan, Morpho-genetic divergence and population structure in Indian Santalum album L. Trees 34, 1113–1129 (2019). doi.org/10.1007/s00468-020-01963-2 [Google Scholar]
- S. Manel, R. Holderegger, Ten years of landscape genetics. Trends Ecol. Evol. 28, 614–621 (2013). doi.org/10.1016/j.tree.2013.05.012 [CrossRef] [Google Scholar]
- Y.N. Seran, Sudarto, L. Hakim, E. Arisoesilaningsih, Sandalwood (Santalum album) growth and farming success strengthen its natural conservation in the Timor Island, Indonesia. Biodiversitas 19, 1586–1592 (2018). doi.org/10.13057/biodiv/d190452 [Google Scholar]
- J.E. Brand, Genotypic variation in Santalum album. Sandalwood Res. Newsl. 2 (1994). [Google Scholar]
- J.N. Owens, P. Sornsathaporhkul, S. Tangmitchareon, Studying Flowering and Seed Ontogeny in Tropical Forest Trees. ASEAN-Canada Forest Tree Seed Centre Project, MuakLek, Thailand (1991). [Google Scholar]
- R. Frankham, J.D. Ballou, D.A. Briscoe, Introduction to Forest Genetics (Cambridge University Press, Cambridge, UK, 2002). [Google Scholar]
- K. Seido, Manual of Isoenzyme Analysis (2nd ed.). FTIP, Ministry of Forestry, Indonesia: Japan International Cooperation Agency and Directorate of Reforestation and Land Rehabilitation (1993). [Google Scholar]
- M. Nei, Molecular Evolutionary Genetics (Columbia University, New York, USA, 1987). [Google Scholar]
- A. Ibrahem, E. Koubaily, A. Thabeet, Assessment of suitable habitat of the natural regeneration of Cedrus libani A. Richard in Slenfeh (Syria). Egypt. J. Remote Sens. Space Sci. 24, 163–171 (2021). doi.org/10.1016/j.ejrs.2020.06.004 [Google Scholar]
- A.A. Royo, W.P. Carson, Stasis in forest regeneration following deer exclusion and understory gap creation: A 10-year experiment. Ecol. Appl. 32, e2569 (2022). doi.org/10.1002/eap.2569 [CrossRef] [PubMed] [Google Scholar]
- L. Hiwasaki, A.M. Bolliger, G. Lacombe, J. Raneri, M. Schut, S. Staal (eds.), Integrated Systems Research for Sustainable Smallholder Agriculture in the Central Mekong: Achievements and Challenges (World Agroforestry Center, Hanoi, Vietnam, 2016). ISBN 978-604-943-434-1. [Google Scholar]
- J.A.T. da Silva, M.M. Kher, D. Soner, T. Page, X. Zhang, M. Nataraj, G. Ma, Sandalwood: basic biology, tissue culture, and genetic transformation. Planta 243, 847–887 (2016). doi.org/10.1007/s00425-015-2452-8 [Google Scholar]
- M. Byrne, B. MacDonald, L. Broadhurst, J. Brand, Regional genetic differentiation in Western Australian sandalwood (Santalum spicatum) as revealed by nuclear RFLP analysis. Theor. Appl. Genet. 107, 1208–1214 (2003). [Google Scholar]
- C.L. Warburton, E.A. James, Y.J. Fripp, S.J. Trueman, H.M. Wallace, Clonality and sexual reproductive failure in remnant populations of Santalum lanceolatum (Santalaceae). Biol. Conserv. 96, (2000). [Google Scholar]
- E. Lhuillier, J.F. Butaud, J.M. Bouvet, Extensive clonality and strong differentiation in the Insular Pacific tree Santalum insulare: implications for its conservation. Ann. Bot. 98, 1061–1072 (2006). [CrossRef] [PubMed] [Google Scholar]
- P.A. Moreira, M.M. Brandao, N.H. Araujo, D.A. Oliveira, G.W. Fernandes, Genetic diversity and structure of the tree Enterolobium contortisiliquum (Fabaceae) associated with remnants of a seasonally dry tropical forest. Flora 210, 40–46 (2015). [Google Scholar]
- L. Bottin, J. Tassin, R. Nasi, J. Bouvet, Molecular, quantitative and abiotic variables for the delineation of evolutionary significant units: case of sandalwood (Santalum austrocaledonicum Vieillard) in New Caledonia. Conserv. Genet. 8, 99–109 (2007). [Google Scholar]
- Lembaga Ilmu Pengetahuan Indonesia (LIPI), The herbarium specimens of Santalum album Linn. collected from Imogiri, Java Island. Herbarium Bogoriense. Cibinong, Bogor. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.