Open Access
Issue
BIO Web Conf.
Volume 167, 2025
5th International Conference on Smart and Innovative Agriculture (ICoSIA 2024)
Article Number 06005
Number of page(s) 11
Section Smart Genetics Resource Management and Utilization
DOI https://doi.org/10.1051/bioconf/202516706005
Published online 19 March 2025
  • F.H. Hutapea, C.J. Weston, D.S. Mendham, L. Volkova, Sustainable management of Eucalyptus pellita plantations: A review. For. Ecol. Manag. 537, 120941 (2023). [CrossRef] [Google Scholar]
  • G.D.S.P. Rezende, J.L. Lima, D.C. Dias, B.M. Lima, A.M. Aguiar, F.L.G. Bertolucci, M.A.P. Ramalho, Clonal composites: An alternative to improve the sustainability of production in eucalypt forests. For. Ecol. Manag. 449, 117445 (2019). [CrossRef] [Google Scholar]
  • J. Vilasboa, C.T. Da Costa, A.G. Fett-Neto, Rooting of eucalypt cuttings as a problem-solving oriented model in plant biology. Prog. Biophys. Mol. Biol. 146, 85–97 (2019). [Google Scholar]
  • M.J. de Araujo, R.C. de Paula, O.C. Campoe, R.L. Carneiro, Adaptability and stability of eucalypt clones at different ages across environmental gradients in Brazil. For. Ecol. Manag. 454, 117631 (2019). [CrossRef] [Google Scholar]
  • M. Asif, M. Saleem, M. Saadullah, H.S. Yaseen, R. Al-Zarzour, COVID-19 and therapy with essential oils having antiviral, anti-inflammatory, and immunomodulatory properties. Inflammopharmacology 28, 1–9 (2020). [CrossRef] [PubMed] [Google Scholar]
  • H.S. Abbass, Eucalyptus essential oil; an off-label use to protect the world from COVID-19 pandemic: review-based hypotheses. Univ. J. Pharm. Res. 5, 57–60 (2020). [Google Scholar]
  • S. Panyod, C.T. Ho, L.Y. Sheen, Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. J. Tradit. Complement. Med. 10, 420–427 (2020). [Google Scholar]
  • S. Panikar, G. Shoba, M. Arun, J.J. Sahayarayan, A.U.R. Nanthini, A. Chinnathambi, S.A. Alharbi, O. Nasif, H.J. Kim, Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (Mpro) with pharmacokinetics and toxicological properties. J. Infect. Public Health 14, 601–610 (2021). [Google Scholar]
  • A.D. Sharma, I. Kaur, Eucalyptol (1,8 cineole) from eucalyptus essential oil a potential inhibitor of COVID 19 coronavirus infection by molecular docking studies. Preprints (2020). [Google Scholar]
  • A.D. Sharma, I. Kaur, Jensenone from eucalyptus essential oil as a potential inhibitor of COVID 19 coronavirus infection. Res. Rev. Biotechnol. Biosci. 7, 59–66 (2020). [Google Scholar]
  • W.W. Winarni, G.S. Susilo, A.A.F. Nugroho, F.R. Safitri, Irwan, Y.W.N. Ratnaningrum, Sprouting and rooting ability of the plus trees of Eucalyptus pellita, E. brassiana and its hybrid in Wanagama, Indonesia, in IOP Conf. Ser.: Earth Environ. Sci. 914, 012051 (2021). [Google Scholar]
  • G.D.D.P. Rezende, D.V.R. Marcos, F.A. Teotoni, Eucalyptus breeding for clonal forestry, in Springer 1, 393–424 (2014). [Google Scholar]
  • G. Lopez, I. Canas, F. Ruiz, Vegetative propagation techniques and genetic improvement in Eucalyptus globulus, in Eucalyptus Species Management, History, Status and Trends in Ethiopia, eds. L. Gil, W. Tadesse, E. Tolosana, R. Lopez (Proceedings from the Congress held in Addis Ababa, September 15th-17th, 2010). [Google Scholar]
  • K. Trust, Eucalypts hybrid clones in East Africa: meeting the demand for wood through clonal forestry technology. Occasional Paper No. 1 (PO Box 71782, Kampala, 2011). [Google Scholar]
  • P.S. Negi, P. Bhatt, A. Rawat, V. Verma, A. Dongariyal, R.K. Prasad, A. Singh, Effects on different potting media and IBA concentrations on sprouting and rooting of Eucalyptus camaldulensis and Eucalyptus hybrid cuttings. The Pharma Innov. J. 9, 326–327 (2020). [Google Scholar]
  • R.E. Hakamada, G.G. Moreira, P.G. Fernandes, S.D.S. Martins, Legacy of harvesting methods on coppice-rotation Eucalyptus at experimental and operational scales. Trees For. People 9, 100293 (2022). [CrossRef] [Google Scholar]
  • E.B. Hardiyanto, M.A. Inail, D.S. Mendham, E. Thaher, B.K. Sitorus, Eucalyptus pellita coppice vs seedlings as a re-establishment method in South Sumatra, Indonesia. Forests 13, 1017 (2022). [CrossRef] [Google Scholar]
  • T.D.S. Souza, F.R. Muniz, V.H. Techio, A.A. Missiaggia, M.A.P. Ramalho, Potential use of polyploid eucalypt in forestry. Ind. Crops Prod. 177, (2022). [Google Scholar]
  • L.M. Broadhurst, R. Mellick, N. Knerr, L. Li, M.A. Supple, Land availability may be more important than genetic diversity in the range shift response of a widely distributed eucalypt, Eucalyptus melliodora. For. Ecol. Manag. 409, 38–46 (2018). [CrossRef] [Google Scholar]
  • B.W. Randall, D.A. Walton, D.J. Lee, H.M. Wallace, The risk of pollen-mediated gene flow into a vulnerable eucalypt species. For. Ecol. Manag. 381, 297–304 (2016). [CrossRef] [Google Scholar]
  • C.A. Stuepp, W. Ivar, S.J. Trueman, H.S. Koehler, K.C. Zuffellato-Ribas, The use of auxin quantification for understanding clonal tree propagation. Forests 8, 27 (2017). [CrossRef] [Google Scholar]
  • M. Calvino-Cancela, M. Neumann, Ecological integration of eucalypts in Europe: Interactions with flower-visiting birds. For. Ecol. Manag. 358, 174–179 (2015). [CrossRef] [Google Scholar]
  • L. Flores-Rentería, P.D. Rymer, M. Riegler, Unpacking boxes: integration of molecular, morphological and ecological approaches reveals extensive patterns of reticulate evolution in box eucalypts. Mol. Phylogenet. Evol. 108, 70–87 (2017). [Google Scholar]
  • T.H. Booth, L.M. Broadhurst, E. Pinkard, S.M. Prober, S.K. Dillon, D. Bush, A.G. Young, Native forests and climate change: Lessons from eucalypts. For. Ecol. Manag. 347, 18–29 (2015). [CrossRef] [Google Scholar]
  • P.H. da Silva, A.M. Sebbenn, D. Grattapaglia, Pollen-mediated gene flow across fragmented clonal stands of hybrid eucalypts in an exotic environment. For. Ecol. Manag. 356, 293–298 (2015). [CrossRef] [Google Scholar]
  • K.S. Venkataramanan, M. Palanisamy, P. Selvaraj, P. Vellaichamy, S.S. Senthamil, G. Divya, Vegetative propagation of Eucalyptus hybrids through water culture method. Int. Res. J. Biol. Sci. 4, 15–18 (2015). [Google Scholar]
  • M. Rajabi, M. Chaichi, A. Azizi, Interaction of IBA and bio-fertilizers on rooting of Eucalyptus cuttings. Plant Prod. Technol. 6, 181–192 (2014). [Google Scholar]
  • J.W. Crous, L. Burger, A comparison of planting and coppice regeneration of Eucalyptus grandis x Eucalyptus urophylla clones in South Africa. South. For. 77, 277–285 (2015). [Google Scholar]
  • X.G. Zhou, D. Ye, H.G. Zhu, X.Q. Li, Y. Su, J. Lan, Y.G. Wen, Effects of second rotation seedlings and coppice on understorey vegetation and timber production of Eucalyptus plantations. J. Trop. For. Sci. 29, 54–68 (2017). [Google Scholar]
  • A.C.F. Filho, J.R.S. Scolforo, B. Mola-Yudego, The coppice-with-standards silvicultural system as applied to Eucalyptus plantations - a review. J. For. Res. 25, 237–248 (2014). [Google Scholar]
  • M. Strandgard, R. Mitchell, Impact of number of stems per stool on mechanical harvesting of a Eucalyptus globulus coppiced plantation in south-west Western Australia. South. For. 80, 137–142 (2018). [Google Scholar]
  • M.M. Fadhlurrahman, S.W. Budi, A.S. Wulandari, Physiological analysis of Eucalyptus pellita F. Muell shoot cuttings in propagation without the application of hormones. J. Trop. Silvic. 15, 36–43 (2024). [Google Scholar]
  • R.D. Nyland, Silviculture: Concepts and Applications (Waveland Press Inc., NC, 2016). [Google Scholar]
  • R.S. Wahyuningtyas, Coppice forest in social forestry as an alternative for regeneration. Galam 4, 189–207 (2010). [Google Scholar]
  • M. Flasinski, K. Hac-Wydro, Natural vs synthetic auxin: Studies on the interactions between plant hormones and biological membrane lipids. Environ. Res. 133, 123–134 (2014). [Google Scholar]
  • I. Syofia, R. Zulhida, M. Irfan, Effect of concentration of extract onion (Allium cepa L.) on the growth of shoots cuttings on some acid orange (Citrus sp.). Agrium 20, (2017). [Google Scholar]
  • K.G. El-Rokiek, M.G. Dawood, M.S. Sadak, M.E. El-Awadi, The effect of the natural extracts of garlic or Eucalyptus on the growth, yield and some chemical constituents in quinoa plants. Bull. Natl. Res. Cent. 43, 119 (2019). [Google Scholar]
  • F.B. Sentosa, Sutarman, I.R. Nurmalasari, The effect of Trichoderma and onion extract on the success of grafting in Mango seedlings, in IOP Conf. Ser.: Earth Environ. Sci. 819, 012008 (2021). [Google Scholar]
  • J. Saputra, Pertumbuhan stek bibit Eucalyptus pellita dengan pemberian berbagai sumber hormon Auksin. Thesis, Faculty of Agriculture and Animal Husbandry, Universitas Islam Negeri Sultan Syarif Kasim, Riau (2017). [Google Scholar]
  • M. Topa, C.E. Purwaningsih, L.E. Ganjari, Pengaruh pemberian ekstrak bawang merah (Allium cepa L.) dengan berbagai konsentrasi terhadap pertumbuhan stek pucuk kayu putih (Melaleuca leucadendron L.). Biospektrum: Jurnal Biologi 1, 117–125 (2023). [Google Scholar]
  • F.F. Qoni, M.L. Woro, Murwani, Effect of Growth Regulatory Substances (ZPT) on the growth of Eucalyptus cuttings (Melaleuca leucadendron Linn). J. Agronisma 10, 40–49 (2022). [Google Scholar]
  • R. Asra, Miranti, A. Adriadi, Growth response of duku kumpeh cuttings with addition of Rootone-F and onion extract. Agrovigor: J. Agroekoteknol. 15, 24–29 (2022). [CrossRef] [Google Scholar]
  • R. Pujiarti, Kasmudjo, Chemical compositions and insecticidal activity of Eucalyptus urophylla essential oil against Culex quinquefasciatus mosquito. J. Korean Wood Sci. Technol. 44, 494–504 (2016). [Google Scholar]
  • R. Pujiarti, P.K. Fentiyanti, Chemical compositions and repellent activity of Eucalyptus tereticornis and Eucalyptus deglupta essential oils against Culex quinquefasciatus mosquito. Thai J. Pharm. Sci. 41, 19–24 (2017). [Google Scholar]
  • J.T. Branitasandhini, Kualitas dan aktivitas antibakteri tiga jenis minyak atsiri ekaliptus terhadap bakteri Escherichia coli. Thesis, Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta (2022). [Google Scholar]
  • F. Fanny, M. Mardhiansyah, R. Sulaeman, The potential of sprouting formation after logging in Eucalyptus pellita. Jom Faperta 2, (2015). [Google Scholar]
  • T. Pullaiah, S.C. Das, V.A. Bapat, M.K. Swamy, V.D. Reddy, K.S.R. Murthy (eds.), Sandalwood: Silviculture, Conservation and Applications (Springer Nature Singapore Pte Ltd., Singapore, 2021). [Google Scholar]
  • Y.W.N. Ratnaningrum, E. Faridah, I.N.S. Utama, B. Prastyo, Establishing breeding house of superior sandalwood in Gunung Sewu, Indonesia: Preserving the 27 selected genotypes grafted onto two types of rootstocks. Biodiversitas 23, 3488–3497 (2021). [Google Scholar]
  • C. Orwa, A. Mutua, R. Kindt, R. Jamnadass, A. Simons, Agroforestree Database: A Tree Reference and Selection Guide Version 4.0 (World Agroforestry Centre, Kenya, 2009). [Google Scholar]
  • W.J. Pereira, M.C.R. Pappas, O.C. Campoe, J.L. Stape, D. Grattapaglia, G.J. Pappas, Patterns of DNA methylation changes in elite Eucalyptus clones across contrasting environments. For. Ecol. Manag. 474, 118319 (2020). https://doi.org/10.1016/j.foreco.2020.118319 [CrossRef] [Google Scholar]
  • I. Vidoy-Mercado, I. Narváez, E. Palomo-Ríos, R.E. Litz, A. Barceló-Muñoz, F. Pliego-Alfaro, Reinvigoration/Rejuvenation induced through micrografting of tree species: Signaling through graft union. Plants 10, 1197 (2021). https://doi.org/10.3390/plants10061197 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.