Open Access
Issue |
BIO Web Conf.
Volume 171, 2025
The Frontier in Sustainable Agromaritime and Environmental Development Conference (FiSAED 2024)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 14 | |
Section | Sustainable Natural Resources and Environmental Management | |
DOI | https://doi.org/10.1051/bioconf/202517101004 | |
Published online | 04 April 2025 |
- S. Xu, X. Zhu, J. Chen, X. Zhu, M. Duan, B. Qiu, L. Wan, X. Tan, Y. N. Xu, and R. Cao, A robust index to extract paddy fields in cloudy regions from SAR time series, Remote Sens. Environ. 285, 113374 (2023). https://doi.org/10.1016/j.rse.2022.113374 [Google Scholar]
- S. C. Omar, A. Shaharudin, and A. T. Siti, The Status of the Paddy and Rice Industry in Malaysia, (Khazanah Research Institute, Kuala Lumpur, 2019). [Google Scholar]
- Ministry of Agriculture and Food Industries, Dasar Agromakanan Negara 2021-2030 (DAN 2.0) Pemodenan Agromakanan: Menjamin Masa Depan Sekuriti Makanan Negara, (Ministry of Agriculture and Food Industries, Putrajaya, 2021) [Google Scholar]
- Fatchurrachman, Rudiyanto, N. C. Soh, R. M. Shah, S. G. E. Giap, B. I. Setiawan, and B. Minasny, High-Resolution Mapping of Paddy Rice Extent and Growth Stages across Peninsular Malaysia Using a Fusion of Sentinel-1 and 2 Time Series Data in Google Earth Engine, Remote Sens. 14, 1875 (2022). https://doi.org/10.3390/rs14081875 [Google Scholar]
- Rudiyanto, B. Minasny, R. M. Shah, N. C. Soh, C. Arif, and B. I. Setiawan, Automated near-real-time mapping and monitoring of rice extent, cropping patterns, and growth stages in Southeast Asia using Sentinel-1 time series on a Google Earth Engine platform, Remote Sens. 11, 14 (2019). https://doi.org/10.3390/rs11141666 [Google Scholar]
- Y. Cai, H. Lin, and M. Zhang, Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data, Adv. Sp. Res. 64, 11 (2019). https://doi.org/10.1016/j.asr.2019.08.042 [Google Scholar]
- N. T. Son, C. F. Chen, C. R. Chen, P. Toscano, Y. S. Cheng, H. Y. Guo, and C. H. Syu, A phenological object-based approach for rice crop classification using time-series Sentinel-1 Synthetic Aperture Radar (SAR) data in Taiwan, Int. J. Remote Sens. 42, 7 (2021). https://doi.org/10.1080/01431161.2020.1862440 [Google Scholar]
- O. S. Azeez, H. Z. M. Shafri, A. H. Alias, and N. A. B. Haron, Integration of Object-Based Image Analysis and Convolutional Neural Network for the Classification of High-Resolution Satellite Image: A Comparative Assessment, Appl. Sci. 12, 10890 (2022). https://doi.org/10.3390/app122110890 [Google Scholar]
- M. Belgiu and O. Csillik, Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis, Remote Sens. Environ. 204 (2018). https://doi.org/10.1016/j.rse.2017.10.005 [Google Scholar]
- J. Han, Z. Zhang, Y. Luo, J. Cao, L. Zhang, F. Cheng, H. Zhuang, J. Zhang, and F. Tao, NESEA-Rice10: High-resolution annual paddy rice maps for Northeast and Southeast Asia from 2017 to 2019, Earth Syst. Sci. Data. 13, 12 (2021). https://doi.org/10.5194/essd-13-5969-2021 [Google Scholar]
- D. Y. Gumel, A. B. A. Makmom, and A. Adamu, Using Indicators to Measure Paddy Farmers’ Adaptive Capacity to Climate Change Variability in the Granary Areas of Peninsular Malaysia, Int. J. Agric. Biol. Sci. 5, 4 (2021). http://dx.doi.org/10.5281/zenodo.5141644 [Google Scholar]
- European Space Agency (ESA), Mission Ends for Copernicus Sentinel-1B Satellite, https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1/Mission_ends_for_Copernicus_Sentinel-1B_satellite [Google Scholar]
- D. B. Nguyen, A. Gruber, and W. Wagner, Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data, Remote Sens. Lett. 7, 12 (2016). http://dx.doi.org/10.1080/2150704X.2016.1225172 [Google Scholar]
- Fatchurrachman, Rudiyanto, N. C. Soh, R. M. Shah, S. G. E. Giap, B. I. Setiawan, and B. Minasny, Automated near-real-time mapping and monitoring of rice growth extent and stages in Selangor Malaysia, Remote Sens. Appl. Soc. Environ. 31, 100993 (2023). https://doi.org/10.1016/j.rsase.2023.100993 [Google Scholar]
- IADA Barat Laut Selangor, Kawasan Pembangunan Pertanian Bersepadu IADA Barat Laut Selangor, https://iadabls.mafs.gov.my/ [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.