Open Access
Issue
BIO Web Conf.
Volume 173, 2025
International Scientific Conference “Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East” (AFE-2024)
Article Number 02022
Number of page(s) 18
Section Animal Husbandry and Feed Science
DOI https://doi.org/10.1051/bioconf/202517302022
Published online 23 April 2025
  • Guo, Z., Chen, Y., Wang, Y., Jiang, H., and Wang, X. (2020). Advances and challenges in metallic nanomaterial synthesis and antibacterial applications. Journal of Materials Chemistry B, 8(22), 4764–4777. doi: 10.1039/D0TB00099J. [CrossRef] [PubMed] [Google Scholar]
  • Vimbela, G. V., Ngo, S. M., Fraze, C., Yang, L., and Stout, D. A. (2017). Antibacterial properties and toxicity from metallic nanomaterials. International journal of nanomedicine, 12, 3941. doi: 10.2147/IJN.S134526. [CrossRef] [Google Scholar]
  • Almasaudi, S. B. (2018). Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features. Saudi journal of biological sciences, 25(3), 586–596. doi: 10.1016/j.sjbs.2016.02.009. [CrossRef] [PubMed] [Google Scholar]
  • Wei, T., Yu, Q., and Chen, H. (2019). Responsive and synergistic antibacterial coatings: fighting against bacteria in a smart and effective way. Advanced healthcare materials, 8(3), 1801381. doi: 10.1002/adhm.201801381. [CrossRef] [Google Scholar]
  • Parthiban, E., Manivannan, N., Ramanibai, R., and Mathivanan, N. (2019). Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. Biotechnology Reports, 21, e00297. [CrossRef] [Google Scholar]
  • Joshi, N. C., and Prakash, Y. A. S. H. W. A. N. I. (2019). Leaves extract-based biogenic synthesis of cupric oxide nanoparticles, characterizations, and antimicrobial activity. Asian J Pharm Clin Res, 12(8), 288–291. [Google Scholar]
  • Yaqoob, A. A., Parveen, T., Umar, K., and Mohamad Ibrahim, M. N. (2020). Role of nanomaterials in the treatment of wastewater: A review. Water, 12(2), 495. doi: 10.3390/w12020495. [CrossRef] [Google Scholar]
  • Bhumi, G.; Linga Rao, M.and Savithramma N. (2015). Green synthesis of silver nanoparticles from the leaf extract of Adhtoda vasicanees and assessment of its antibacterial activity. Asian J. Pharm. Clin. Res., 8:62–67. [Google Scholar]
  • Hadjiivanov, K.I.; Panayotov, D.A.; Mihaylov, M.Y.; Ivanova, E.Z.; Chakarova, K.K.; Andonova, S.M. et al. (2021). Power of infrared and raman spectroscopies to characterize metal organic frameworks and investigate their interaction with guest molecules. Chemical Review,121:1286–1424. [CrossRef] [PubMed] [Google Scholar]
  • Kuppusamy, P., Yusof, M.M., Maniam, G.P. and Govindan, N. (2014). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—an updated report. Saudi Pharm. J. 8, 473–484. [Google Scholar]
  • Shankar, S.S., Ahmad, A., Pasricha, R. and Sastry, M. (2003). Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of diferent shapes. J. Mater. Chem. 13, 1822–1826. [Google Scholar]
  • Mude, N., Ingle, A., Gade, A. and Rai, M. (2009). Synthesis of silver nanoparticles using callus extract of Carica papaya-a frst report. J. Plant Biochem. Biotechnol. 18, 83–86. [Google Scholar]
  • Dakal, T. C., Kumar, A., Majumdar, R. S., and Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles, Front. Microbiol. 7 (2016). [Google Scholar]
  • Vega-Jiménez, A. L., Vázquez-Olmos, A. R., Acosta-Gío, E., and Álvarez-Pérez, M. A. (2019). In vitro antimicrobial activity evaluation of metal oxide nanoparticles. Nanoemulsions Prop. Fabr. Appl, 1–18. [Google Scholar]
  • Zhang, J., Ma, J., Fan, X., Peng, W., Zhang, G., Zhang, F., and Li, Y. (2017). Graphene supported Au-Pd-Fe3O4 alloy trimetallic nanoparticles with peroxidase-like activities as mimic enzyme. Catalysis Communications, 89, 148–151. [CrossRef] [Google Scholar]
  • Godfrey, I. J., Dent, A. J., Parkin, I. P., Maenosono, S., and Sankar, G. (2017). Structure of gold-silver nanoparticles. The Journal of Physical Chemistry C, 121(3), 1957–1963. [CrossRef] [Google Scholar]
  • Arora, N., Thangavelu, K., and Karanikolos, G. N. (2020). Bimetallic nanoparticles for antimicrobial applications. Frontiers in Chemistry, 8, 412. [CrossRef] [PubMed] [Google Scholar]
  • Basavegowda, N., and Baek, K. H. (2021). Multimetallic Nanoparticles as Alternative Antimicrobial Agents: Challenges and Perspectives. Molecules, 26(4), 912. [CrossRef] [PubMed] [Google Scholar]
  • Jesudoss, S. K., Vijaya, J. J., Selvam, N., Kombaiah, K., Sivachidambaram, M., Adinaveen, T. and Kennedy, L. J. (2016). Effects of Ba doping on structural, morphological, optical, and photocatalytic properties of self-assembled ZnO nanospheres. Clean Technologies and Environmental Policy, 18(3), 729–741. [CrossRef] [Google Scholar]
  • Ncube, N. S.; Afolayan, A.J. and Okoh, A.I. (2008). Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. African Journal of Biotechnology, 12(7): 1797–1806. [CrossRef] [Google Scholar]
  • Ogunyemi, S. O., Zhang, F., Abdallah, Y., Zhang, M., Wang, Y., Sun, G. et al. (2019). Biosynthesis and characterization of magnesium oxide and manganese dioxide nanoparticles using Matricaria chamomilla L. extract and its inhibitory effect on Acidovorax oryzae strain RS-2. Artificial cells, nanomedicine, and biotechnology, 47(1), 2230–2239. [CrossRef] [PubMed] [Google Scholar]
  • Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V. and Buszewski, B. (2017). Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Advances in colloid and interface science, 249, 37–52. [CrossRef] [PubMed] [Google Scholar]
  • Wang, L., Hu, C. and Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International journal of nanomedicine, 12, 1227. [CrossRef] [Google Scholar]
  • Packirisamy, R. G., Govindasamy, C., Sanmugam, A., Karuppasamy, K., Kim, H. S., & Vikraman, D. (2019). Synthesis and antibacterial properties of novel ZnMn2O4-chitosan nanocomposites. Nanomaterials, 9(11), 1589. [CrossRef] [PubMed] [Google Scholar]
  • Kumar, L., Chhibber, S.K. and (2013). Harjai, Zinger one inhibits biofilm formation and improve Antibiofilm efficacy of ciprofloxacin against Pseudomonas aeruginosa PAO1. Fitoterapia, 90. 73–78. [CrossRef] [PubMed] [Google Scholar]
  • Rajkumari, J., Busi, S., Vasu, A. C. and Reddy, P. (2017). Facile green synthesis of baicalein fabricated gold nanoparticles and their antibiofilm activity against Pseudomonas aeruginosa PAO1. Microbial pathogenesis, 107, 261–269. [CrossRef] [PubMed] [Google Scholar]
  • Cai, L., Chen, J., Liu, Z., Wang, H., Yang, H. and Ding, W. (2018). Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Frontiers in microbiology, 9, 790. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.