Open Access
Issue
BIO Web Conf.
Volume 174, 2025
2025 7th International Conference on Biotechnology and Biomedicine (ICBB 2025)
Article Number 02001
Number of page(s) 6
Section Innovations in Therapeutics and Disease Mechanisms
DOI https://doi.org/10.1051/bioconf/202517402001
Published online 12 May 2025
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209–249. [CrossRef] [PubMed] [Google Scholar]
  • World Health Organization, (2024). Breast cancer. https://www.who.int/news-room/fact-sheets/detail/breast-cancer. [Google Scholar]
  • Chun, K. H., Park, J. H., & Fan, S. (2017). Predicting and overcoming chemotherapeutic resistance in breast cancer. Advances in experimental medicine and biology, 1026, 59–104. [Google Scholar]
  • Makwana, V., Karanjia, J., Haselhorst, T., Anoopkumar-Dukie, S., & Rudrawar, S. (2021). Liposomal doxorubicin as targeted delivery platform: Current trends in surface functionalization. International journal of pharmaceutics, 593, 120117. [CrossRef] [PubMed] [Google Scholar]
  • Lamichhane, S., & Lee, S. (2020). Albumin nanoscience: homing nanotechnology enabling targeted drug delivery and therapy. Archives of pharmacal research, 43(1), 118–133. [CrossRef] [PubMed] [Google Scholar]
  • Miele, E., Spinelli, G. P., Miele, E., Tomao, F., & Tomao, S. (2009). Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. International journal of nanomedicine, 4, 99–105. [PubMed] [Google Scholar]
  • Kunde, S. S., & Wairkar, S. (2022). Targeted delivery of albumin nanoparticles for breast cancer: A review. Colloids and surfaces B-Biointerfaces, 213, 112422. [CrossRef] [Google Scholar]
  • Dinakar, Y. H., Karole, A., Parvez, S., Jain, V., & Mudavath, S. L. (2023). Folate receptor targeted NIR cleavable liposomal delivery system augment penetration and therapeutic efficacy in breast cancer. Biochimica et biophysica acta, 1867(9), 130396. [CrossRef] [Google Scholar]
  • Soe, Z. C., Kwon, J. B., Thapa, R. K., Ou, W., Nguyen, H. T., Gautam, M., Oh, K. T., Choi, H. G., Ku, S. K., Yong, C. S., & Kim, J. O. (2019). Transferrin-conjugated polymeric nanoparticle for receptor-mediated delivery of doxorubicin in doxorubicin-resistant breast cancer cells. Pharmaceutics, 11(2), 63. [CrossRef] [PubMed] [Google Scholar]
  • Rizwanullah, M., Ahmad, M. Z., Ghoneim, M. M., Alshehri, S., Imam, S. S., Md, S., Alhakamy, N. A., Jain, K., & Ahmad, J. (2021). Receptor-Mediated targeted delivery of surface-modified nanomedicine in breast cancer: recent update and challenges. Pharmaceutics, 13(12), 2039. [CrossRef] [PubMed] [Google Scholar]
  • Baron, J. M., Boster, B. L., & Barnett, C. M. (2015). Ado-trastuzumab emtansine (T-DM1): a novel antibody-drug conjugate for the treatment of HER2-positive metastatic breast cancer. Journal of oncology pharmacy practice, 21(2), 132–142. [CrossRef] [PubMed] [Google Scholar]
  • Joun, I., Nixdorf, S., & Deng, W. (2022). Advances in lipid-based nanocarriers for breast cancer metastasis treatment. Frontiers in medical technology, 4, 893056. [CrossRef] [PubMed] [Google Scholar]
  • Bai, X., Smith, Z. L., Wang, Y., Butterworth, S., & Tirella, A. (2022). Sustained drug release from smart nanoparticles in cancer therapy: A comprehensive review. Micromachines, 13(10), 1623. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, H., Wang, R., Wu, C., Feng, W., Zhong, Q., Chen, X., Wang, T., & Mao, C. (2023). Diffusion-mediated carving of interior topologies of all-natural protein nanoparticles to tailor sustained drug release for effective breast cancer therapy. Biomaterials, 295, 122027. [CrossRef] [PubMed] [Google Scholar]
  • Kousar, K., Shafiq, S., Sherazi, S. T., Iqbal, F., Shareef, U., Kakar, S., & Ahmad, T. (2024). In silico ADMET profiling of docetaxel and development of camel milk derived liposomes nanocarriers for sustained release of docetaxel in triple negative breast cancer. Scientific reports, 14(1), 912. [CrossRef] [PubMed] [Google Scholar]
  • Gooneh-Farahani, S., Naghib, S. M., Naimi-Jamal, M. R., & Seyfoori, A. (2021). A pH-sensitive nanocarrier based on BSA-stabilized graphene-chitosan nanocomposite for sustained and prolonged release of anticancer agents. Scientific reports, 11(1), 17404. [CrossRef] [PubMed] [Google Scholar]
  • He, H., Liu, L., Zhang, S., Zheng, M., Ma, A., Chen, Z., Pan, H., Zhou, H., Liang, R., & Cai, L. (2020). Smart gold nanocages for mild heat-triggered drug release and breaking chemoresistance. Journal of controlled release, 323, 387–397. [CrossRef] [PubMed] [Google Scholar]
  • Maron, E., Krysinski, P., & Chudy, M. (2023). Controlled release of doxorubicin from magnetoliposomes assisted by low-frequency magnetic field. Chemistry biodiversity, 20(4), e202201079. [CrossRef] [PubMed] [Google Scholar]
  • M. A. Subhan & M. Muzibur Rahman. (2022) Recent development in metallic nanoparticles for breast cancer therapy and diagnosis. Chemical record, 227: e202100331. [Google Scholar]
  • L. H. Fu, Y. R. Hu, C. Qi, T. He, S. Jiang, C. Jiang, J. He, J. Qu, J. Lin & P. Huang. (2019) Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano, 1312: 13985-13994. [CrossRef] [PubMed] [Google Scholar]
  • Sarkar, P., Ghosh, S. & Sarkar, K. (2021). Folic acid based carbon dot functionalized stearic acid-g-polyethyleneimine amphiphilic nanomicelle. Colloids and surfaces B-Biointerfaces, 197: 111382. [CrossRef] [Google Scholar]
  • C. Peng, X. Zeng, J. Cai, H. Huang, F. Yang, S. Jin, X. Guan & Z. Wang. (2023) Albumin-based nanosystem for dual-modality imaging-guided chem-phototherapy against immune-cold triple-negative breast cancer. Regenerative biomaterials, 10, rbad073. [CrossRef] [PubMed] [Google Scholar]
  • Zheng, D., Wan, C., Yang, H., Xu, L., Dong, Q., Du, C., Du, J., & Li, F. (2020). Her2-targeted multifunctional nano-theranostic platform mediates tumor microenvironment remodeling and immune activation for breast cancer treatment. International journal of nanomedicine, 15: 10007–10028. [CrossRef] [Google Scholar]
  • J. Yang, T. Wang, L. Zhao, V. K. Rajasekhar, S. Joshi, C. Andreou, S. Pal, H. T. Hsu, H. Zhang, I. J. Cohen, R. Huang, R. C. Hendrickson, M. M. Miele, W. Pei, M. B. Brendel, J. H. Healey, G. Chiosis & M. F. Kircher. (2020) Gold/alpha-lactalbumin nanoprobes for the imaging and treatment of breast cancer. Nature biomedical engineering, 47: 686-703. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.