Open Access
Issue
BIO Web Conf.
Volume 174, 2025
2025 7th International Conference on Biotechnology and Biomedicine (ICBB 2025)
Article Number 02006
Number of page(s) 12
Section Innovations in Therapeutics and Disease Mechanisms
DOI https://doi.org/10.1051/bioconf/202517402006
Published online 12 May 2025
  • Ramachandran A, Ma RC, Snehalatha C. Diabetes in Asia. Lancet. 2010 Jan 30;375(9712):408-18. doi: 10.1016/S0140-6736(09)60937-5. Epub 2009 Oct 28. PMID: 19875164. [CrossRef] [PubMed] [Google Scholar]
  • Nanditha A, Ma RC, Ramachandran A, Snehalatha C, Chan JC, Chia KS, Shaw JE, Zimmet PZ. Diabetes in Asia and the Pacific: Implications for the Global Epidemic. Diabetes Care. 2016 Mar;39(3):472-85. doi: 10.2337/dc15-1536. PMID: 26908931. [CrossRef] [PubMed] [Google Scholar]
  • Xu Y, Wang L, He J, Bi Y, Li M, Wang T, Wang L, Jiang Y, Dai M, Lu J, Xu M, Li Y, Hu N, Li J, Mi S, Chen CS, Li G, Mu Y, Zhao J, Kong L, Chen J, Lai S, Wang W, Zhao W, Ning G; 2010 China Noncommunicable Disease Surveillance Group. Prevalence and control of diabetes in Chinese adults. JAMA. 2013 Sep 4;310(9):948-59. doi: 10.1001/jama.2013.168118. PMID: 24002281. [CrossRef] [PubMed] [Google Scholar]
  • Reiber GE, McDonell MB, Schleyer AM, Fihn SD, Reda DJ. A comprehensive system for quality improvement in ambulatory care: assessing the quality of diabetes care. Patient Educ Couns. 1995 Sep;26(1-3):337-41. doi: 10.1016/0738-3991(95)00741-h. PMID: 7494747. [CrossRef] [PubMed] [Google Scholar]
  • Keni R, Begum F, Gourishetti K, Viswanatha GL, Nayak PG, Nandakumar K, Shenoy RR. Diabetic wound healing approaches: an update. J Basic Clin Physiol Pharmacol. 2022 Jan 7;34(2):137-150. doi: 10.1515/jbcpp-2021-0340. PMID: 34995024. [Google Scholar]
  • Li X, Li N, Li B, Feng Y, Zhou D, Chen G. Noncoding RNAs and RNA-binding proteins in diabetic wound healing. Bioorg Med Chem Lett. 2021 Oct 15; 50:128311. doi: 10.1016/j.bmcl.2021.128311. Epub 2021 Aug 23. PMID: 34438011. [CrossRef] [Google Scholar]
  • Ozdemir D, Feinberg MW. MicroRNAs in diabetic wound healing: Pathophysiology and therapeutic opportunities. Trends Cardiovasc Med. 2019 Apr; 29(3):131-137. doi: 10.1016/j.tcm.2018.08.002. Epub 2018 Aug 8. PMID: 30143275; PMCID: PMC6368472. [CrossRef] [Google Scholar]
  • Tang YB, Uwimana MMP, Zhu SQ, Zhang LX, Wu Q, Liang ZX. Non-coding RNAs: Role in diabetic foot and wound healing. World J Diabetes. 2022 Dec 15;13(12):1001-1013. doi:10.4239/wjd.v13.i12.1001. PMID: 36578864; PMCID: PMC9791568. [CrossRef] [PubMed] [Google Scholar]
  • Hu J, Zhang L, Liechty C, Zgheib C, Hodges MM, Liechty KW, Xu J. Long Noncoding RNA GAS5 Regulates Macrophage Polarization and Diabetic Wound Healing. J Invest Dermatol. 2020 Aug;140(8):1629-1638. doi: 10.1016/j.jid.2019.12.030. Epub 2020 Jan 28. PMID: 32004569; PMCID: PMC7384923. [CrossRef] [Google Scholar]
  • Yuan L, Sun Y, Xu M, Zeng F, Xiong X. miR-203 Acts as an Inhibitor for Epithelial-Mesenchymal Transition Process in Diabetic Foot Ulcers via Targeting Interleukin-8. Neuroimmunomodulation. 2019;26(5):239-249. doi: 10.1159/000503087. Epub 2019 Nov 8. PMID: 31707396. [CrossRef] [PubMed] [Google Scholar]
  • Jiang YZ, Li Y, Wang K, Dai CF, Huang SA, Chen DB, Zheng J. Distinct roles of HIF1A in endothelial adaptations to physiological and ambient oxygen. Mol Cell Endocrinol. 2014 Jun 25;391(1-2):60-7. doi: 10.1016/j.mce.2014.04.008. Epub 2014 May 2. PMID: 24796659; PMCID: PMC4079002. [CrossRef] [Google Scholar]
  • Byun J, Wu Y, Park J, Kim JS, Li Q, Choi J, Shin N, Lan M, Cai Y, Lee J, Oh YK. RNA Nanomedicine: Delivery Strategies and Applications. AAPS J. 2023 Oct 2;25(6):95. doi: 10.1208/s12248-023-00860-z. PMID: 37784005. [CrossRef] [Google Scholar]
  • W D T, P C B, J G G. Experimental strategies for microRNA target identification. [J]. Nucleic acids research,2011,39(16):6845-53. [CrossRef] [PubMed] [Google Scholar]
  • Mina Z, Rakesh P, Maya M, et al. Encapsulation of miRNA and siRNA into Nanomaterials for Cancer Therapeutics [J]. Pharmaceutics,2022,14(8):1620-1620. [CrossRef] [PubMed] [Google Scholar]
  • Li C, Li X, Li F, et al. A microRNA delivery carrier for hepatic carcinoma therapy using layer-by-layer self-assembled mesenchymal stem cells [J]. Translational Cancer Research, 2020,9(9):5380-5389. [CrossRef] [PubMed] [Google Scholar]
  • Shi ML, Zhao ZH, Wang Y, et al. In vivo delivery of siRNA [J]. Herditas, 2009, 31: 683−688. [Google Scholar]
  • Dana J, Gary NP, Won YY. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery [J]. J Control Release, 2007, 121: 64−73. [CrossRef] [PubMed] [Google Scholar]
  • YANG FF, HUANG W, LI YF, GAO ZG, Current status of non-viral vectors for siRNA delivery. Acta Pharmaceutica Sinica 2011, 46 (12): 1436−1443. [Google Scholar]
  • Min M, Gao GL. Progress of RNA interfering and its application in the tumor therapy [J]. Pract J Cancer, 2008, 23: 537−539. [Google Scholar]
  • S. A. Dar, A. Thakur, A. Qureshi, M. Kumar, Sci. Rep. 2016, 6, 20031. [CrossRef] [Google Scholar]
  • Selvam C, Mutisya D, Prakash S, Ranganna K, Thilagavathi R. Therapeutic potential of chemically modified siRNA: Recent trends. Chem Biol Drug Des. 2017; 90:665–678. [CrossRef] [PubMed] [Google Scholar]
  • Jonathan KW, Glen F, Masad JD, et al. Chemically modified siRNA: tools and applications [J]. Drug Discov Today, 2008, 13: 842−855. [CrossRef] [Google Scholar]
  • Rabbani PS, Zhou A, Borab ZM, Frezzo JA, Srivastava N, More HT, et al. Novel lipoproteoplex delivers Keap1 siRNA based gene therapy to accelerate diabetic wound healing. Biomaterials. 2017;132:1-15. [CrossRef] [PubMed] [Google Scholar]
  • Martin JR, Nelson CE, Gupta MK, Yu F, Sarett SM, Hocking KM, et al. Local Delivery of PHD2 siRNA from ROS-Degradable Scaffolds to Promote Diabetic Wound Healing. Adv Healthc Mater. 2016;5:2751-7. [CrossRef] [PubMed] [Google Scholar]
  • D. S. Wilson, G. Dalmasso, L. Wang, S. V. Sitaraman, D. Merlin, N. Murthy, Nat. Mater. 2010, 9, 923. [CrossRef] [PubMed] [Google Scholar]
  • J. R. Martin, M. K. Gupta, J. M. Page, F. Yu, J. M. Davidson, S. A. Guelcher, C. L. Duvall, Biomaterials 2014, 35, 3766. [CrossRef] [PubMed] [Google Scholar]
  • Lei H, Fan D. A Combination Therapy Using Electrical Stimulation and Adaptive, Conductive Hydrogels Loaded with Self-Assembled Nanogels Incorporating Short Interfering RNA Promotes the Repair of Diabetic Chronic Wounds. Adv Sci (Weinh). 2022;9:e2201425. [CrossRef] [PubMed] [Google Scholar]
  • Guo X, Gao C, Yang DH, Li S. Exosomal circular RNAs: A chief culprit in cancer chemotherapy resistance. Drug Resist Updat. 2023;67:100937. [CrossRef] [Google Scholar]
  • Maurizi A, Patrizii P, Teti A, Sutera FM, Baran-Rachwalska P, Burns C, et al. Novel hybrid silicon-lipid nanoparticles deliver a siRNA to cure autosomal dominant osteopetrosis in mice. Implications for gene therapy in humans. Mol Ther Nucleic Acids. 2023;33:925-37. [CrossRef] [Google Scholar]
  • Miele E, Spinelli GP, Miele E, et al. Nanoparticle-based delivery of smallinterfering RNA: challenges for cancer therapy. International Journal of Nanomedicine[J]. Int J Nanomedicine, 2012,7: 3637-3657. [Google Scholar]
  • Simona Granata, Giovanni Stallone, Gianluigi Zaza. mRNA as a medicine in nephrology: the future is now. CKJ. Aug 17, 2023. [Google Scholar]
  • Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078-1094. doi: 10.1038/s41578-021-00358-0. Epub 2021 Aug 10. PMID: 34394960; PMCID: PMC8353930. [CrossRef] [Google Scholar]
  • Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB, McGettigan J, Khetan S, Segall N, Solis J, Brosz A, Fierro C, Schwartz H, Neuzil K, Corey L, Gilbert P, Janes H, Follmann D, Marovich M, Mascola J, Polakowski L, Ledgerwood J, Graham BS, Bennett H, Pajon R, Knightly C, Leav B, Deng W, Zhou H, Han S, Ivarsson M, Miller J, Zaks T; COVE Study Group. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021 Feb 4;384(5):403-416. doi:10.1056/NEJMoa2035389. Epub 2020 Dec 30. PMID: 33378609; PMCID: PMC7787219. [CrossRef] [PubMed] [Google Scholar]
  • Ostro MJ, Giacomoni D, Lavelle D, Paxton W, Dray S. Evidence for translation of rabbit globin mRNA after liposomemediated insertion into a human cell line. Nature. 1978; 274:921–923./Dimitriadis GJ. Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes. Nature. 1978;274:923–924. [CrossRef] [PubMed] [Google Scholar]
  • Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol Ther. 2019 Apr 10;27(4):710-728. doi: 10.1016/j.ymthe.2019.02.012. Epub 2019 Feb 19. PMID: 30846391; PMCID: PMC6453548. [CrossRef] [Google Scholar]
  • Blanco E., Shen H., Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015;33:941–951. [CrossRef] [PubMed] [Google Scholar]
  • Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol. Ther. 2019;27:710–728. [CrossRef] [Google Scholar]
  • Karnik R, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett. 2008;8:2906–2912. [CrossRef] [PubMed] [Google Scholar]
  • Leung AK, Tam YYC, Chen S, Hafez IM, Cullis PR. Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems. J. Phys. Chem. B. 2015;119:8698–8706. [CrossRef] [PubMed] [Google Scholar]
  • Blakney AK, McKay PF, Yus BI, Aldon Y, Shattock RJ. Inside out: optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA. Gene Ther. 2019;26:363–372. [CrossRef] [PubMed] [Google Scholar]
  • Li B, Zhang X, Dong Y. Nanoscale platforms for messenger RNA delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019;11:e1530. [CrossRef] [PubMed] [Google Scholar]
  • Zhang X, et al. Functionalized lipid-like nanoparticles for in vivo mRNA delivery and base editing. Sci. Adv. 2020;6:eabc2315. [Google Scholar]
  • Miao L, et al. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nat. Commun. 2020;11:2424. [CrossRef] [Google Scholar]
  • Wang S, Zhang Y, Zhong Y, Xue Y, Liu Z, Wang C, Kang DD, Li H, Hou X, Tian M, Cao D, Wang L, Guo K, Deng B, McComb DW, Merad M, Brown BD, Dong Y. Accelerating diabetic wound healing by ROS-scavenging lipid nanoparticle-mRNA formulation. Proc Natl Acad Sci U S A. 2024 May 28;121(22):e2322935121. doi:10.1073/pnas.2322935121. Epub 2024 May 21. PMID: 38771877; PMCID: PMC11145207. [CrossRef] [PubMed] [Google Scholar]
  • Dong S, Wang J, Guo Z, Zhang Y, Zha W, Wang Y, Liu C, Xing H, Li X. Efficient delivery of VEGFA mRNA for promoting wound healing via ionizable lipid nanoparticles. Bioorg Med Chem. 2023 Jan 15;78:117135. doi: 10.1016/j.bmc.2022.117135. Epub 2022 Dec 16. PMID: 36577327. [CrossRef] [Google Scholar]
  • Zhao M, Li M, Zhang Z, Gong T, Sun X. Induction of HIV-1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA. Drug Deliv. 2016 Sep;23(7):2596-2607. doi: 10.3109/10717544.2015.1038856. Epub 2015 May 29. PMID: 26024387. [CrossRef] [PubMed] [Google Scholar]
  • Guidotti G, Brambilla L, Rossi D. Cell-Penetrating Peptides: From Basic Research to Clinics. Trends Pharmacol Sci. 2017 Apr;38(4):406-424. doi: 10.1016/j.tips.2017.01.003. Epub 2017 Feb 14. PMID: 28209404. [CrossRef] [Google Scholar]
  • Wu H, Yao Z, Li H, Zhang L, Zhao Y, Li Y, Wu Y, Zhang Z, Xie J, Ding F, Zhu H. Improving dermal fibroblast-to-epidermis communications and aging wound repair through extracellular vesicle-mediated delivery of Gstm2 mRNA. J Nanobiotechnology. 2024 Jun 2;22(1):307. doi: 10.1186/s12951-024-02541-1. PMID: 38825668; PMCID: PMC11145791. [CrossRef] [PubMed] [Google Scholar]
  • Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Morales DR, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 2009;106:11667e72. [CrossRef] [PubMed] [Google Scholar]
  • Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol 2021;220:e202009045. [CrossRef] [PubMed] [Google Scholar]
  • Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell 2018;172:393e407. [CrossRef] [PubMed] [Google Scholar]
  • Xu J, Bai J, Zhang X, Lv Y, Gong Y, Liu L, et al. A comprehensive overview of lncRNA annotation resources. Briefings Bioinf 2017;18: 236e49. [Google Scholar]
  • Kazimierczyk M, Kasprowicz MK, Kasprzyk ME, Wrzesinski J. Human long noncoding RNA interactome: detection, characterization and function. Int J Mol Sci 2020;21:1027. [CrossRef] [Google Scholar]
  • Tao SC, Rui BY, Wang QY, Zhou D, Zhang Y, Guo SC. Extracellular vesicle-mimetic nanovesicles transport LncRNA-H19 as competing endogenous RNA for the treatment of diabetic wounds. Drug Deliv. 2018;25:241-55. [CrossRef] [PubMed] [Google Scholar]
  • Zhang Y, Huang YX, Jin X, Chen J, Peng L, Wang DL, et al. Human long noncoding RNA . J Nanobiotechnology. 2021;19:303. [CrossRef] [PubMed] [Google Scholar]
  • Mates L, Chuah MK, Belay E, Jerchow B, Manoj N, Acosta-Sanchez A, Grzela DP, Schmitt A, Becker K, Matrai J, Ma L, Samara-Kuko E, Gysemans C, Pryputniewicz D, Miskey C, Fletcher B, VandenDriessche T, Ivics Z, Izsvak Z. Molecular evolution of a novel hyperactive Sleeping Beauty trans‑posase enables robust stable gene transfer in vertebrates. Nat Genet. 2009;41(6):753–61. [CrossRef] [PubMed] [Google Scholar]
  • Chen Y, Li Z, Chen X, Zhang S. Long non-coding RNAs: From disease code to drug role. Acta Pharm Sin B. 2021;11:340-54. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.