Open Access
Issue
BIO Web Conf.
Volume 174, 2025
2025 7th International Conference on Biotechnology and Biomedicine (ICBB 2025)
Article Number 03012
Number of page(s) 7
Section Technologies and Methodologies in Biomedical Research
DOI https://doi.org/10.1051/bioconf/202517403012
Published online 12 May 2025
  • Polishchuk, P. G., T.I. Madzhidov, and A.J.J.o.c.-a.m.d. Varnek, Estimation of the size of drug-like chemical space based on GDB-17 data. 2013. 27: p. 675-679. [Google Scholar]
  • Macarron, R., et al., Impact of high-throughput screening in biomedical research. 2011. 10(3): p. 188-195. [Google Scholar]
  • Schneider, G. and H.-J.J.D.d.t. Böhm, Virtual screening and fast automated docking methods. 2002. 7: p. 64-70. [Google Scholar]
  • Li, J.-N., et al., CProMG: controllable protein-oriented molecule generation with desired binding affinity and drug-like properties. 2023. 39(Supplement_1): p. i326-i336. [Google Scholar]
  • Pang, C., et al., Deep generative models in de novo drug molecule generation. Journal of Chemical Information and Modeling, 2023. 64(7): p. 2174-2194. [Google Scholar]
  • Irwin, R., et al., Chemformer: a pre-trained transformer for computational chemistry. 2022. 3(1): p. 015022. [Google Scholar]
  • Isert, C., K. Atz, and G. Schneider, Structure-based drug design with geometric deep learning. Current Opinion in Structural Biology, 2023. 79: p. 102548. [CrossRef] [Google Scholar]
  • Wang, L., et al., Lingo3dmol: Generation of a pocket-based 3d molecule using a language model. 2023. [Google Scholar]
  • Li, C., et al. Transformer-based Objective-reinforced Generative Adversarial Network to Generate Desired Molecules. in IJCAI. 2022. [Google Scholar]
  • Du, Y., et al., Machine learning-aided generative molecular design. Nature Machine Intelligence, 2024. 6(6): p. 589-604. [CrossRef] [Google Scholar]
  • Zhang, S., et al., Applications of transformer-based language models in bioinformatics: a survey. Bioinformatics Advances, 2023. 3(1): p. vbad001. [Google Scholar]
  • Rampásek, L., et al., Recipe for a general, powerful, scalable graph transformer, 2022. CoRR. [Google Scholar]
  • Veličković, P., Everything is connected: Graph neural networks. Current Opinion in Structural Biology, 2023. 79: p. 102538. [CrossRef] [Google Scholar]
  • Black, M., et al., Comparing graph transformers via positional encodings. arXiv preprint arXiv:2402.14202, 2024. [Google Scholar]
  • Müller, L., et al., Attending to graph transformers. arXiv preprint arXiv:2302.04181, 2023. [Google Scholar]
  • He, L., et al., High-order graph attention network. Information Sciences, 2023. 630: p. 222-234. [CrossRef] [Google Scholar]
  • Fang, Y., et al., Domain-agnostic molecular generation with chemical feedback. arXiv preprint arXiv:2301.11259, 2023. [Google Scholar]
  • Mazuz, E., et al., Molecule generation using transformers and policy gradient reinforcement learning. Scientific Reports, 2023. 13(1): p. 8799. [CrossRef] [Google Scholar]
  • Pandey, R., et al., Generative AI-based text generation methods using pre-trained GPT-2 model. arXiv preprint arXiv:2404.01786, 2024. [Google Scholar]
  • Meister, C., et al., Locally typical sampling. Transactions of the Association for Computational Linguistics, 2023. 11: p. 102-121. [CrossRef] [Google Scholar]
  • Che, X., Q. Liu, and L. Zhang, An accurate and universal protein-small molecule batch docking solution using Autodock Vina. Results in Engineering, 2023. 19: p. 101335. [CrossRef] [Google Scholar]
  • Landrum, G., Rdkit: Open-source cheminformatics software. 2016. [Google Scholar]
  • Francoeur, P. G., et al., Three-dimensional convolutional neural networks and a cross-docked data set for structure-based drug design. 2020. 60(9): p. 4200-4215. [Google Scholar]
  • Schneuing, A., et al., Structure-based drug design with equivariant diffusion models. 2022. [Google Scholar]
  • Paszke, A., et al., Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems, 2019. 32. [Google Scholar]
  • Luo, S., et al., A 3D generative model for structure-based drug design. Advances in Neural Information Processing Systems, 2021. 34: p. 6229-6239. [Google Scholar]
  • Peng, X., et al. Pocket2mol: Efficient molecular sampling based on 3d protein pockets. in International Conference on Machine Learning. 2022. PMLR. [Google Scholar]
  • Park, J. K., et al., The discovery and the structural basis of an imidazo [4, 5-b] pyridine-based p21-activated kinase 4 inhibitor. Bioorganic & medicinal chemistry letters, 2016. 26(11): p. 2580-2583. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.