Open Access
Issue
BIO Web Conf.
Volume 174, 2025
2025 7th International Conference on Biotechnology and Biomedicine (ICBB 2025)
Article Number 03017
Number of page(s) 6
Section Technologies and Methodologies in Biomedical Research
DOI https://doi.org/10.1051/bioconf/202517403017
Published online 12 May 2025
  • Qian, L., Lin, X., Gao, X., Khan, R. U., Liao, J.-Y., Du, S., Ge, J., Zeng, S., & Yao, S. Q. (2023). The dawn of a new era: targeting the “undruggables” with antibody-based therapeutics. Chemical reviews, 123(12), 7782-7853. [CrossRef] [PubMed] [Google Scholar]
  • De la Torre, B. G., & Albericio, F. (2024). The pharmaceutical industry in 2023: An analysis of FDA drug approvals from the perspective of molecules. Molecules, 29(3), 585. [CrossRef] [PubMed] [Google Scholar]
  • Georges, G. J., Dengl, S., Bujotzek, A., Hesse, F., Fischer, J. A. A., Gärtner, A., Benz, J., Lauer, M. E., Ringler, P., Stahlberg, H., Plath, F., Brinkmann, U., & Imhof-Jung, S. (2020). The Contorsbody, an antibody format for agonism: Design, structure, and function. Comput Struct Biotechnol J, 18, 1210-1220. https://doi.org/10.1016/j.csbj.2020.05.007 [Google Scholar]
  • Peng, H.-P., Hsu, H.-J., Yu, C.-M., Hung, F.-H., Tung, C.-P., Huang, Y.-C., Chen, C.-Y., Tsai, P.-H., & Yang, A.-S. (2022). Antibody CDR amino acids underlying the functionality of antibody repertoires in recognizing diverse protein antigens. Scientific Reports, 12(1), 12555. [CrossRef] [PubMed] [Google Scholar]
  • Cheng, Z., Sun, Y., Shen, Y., Wu, X., Pan, L., Wu, H., Bai, Y., Zhao, C., Ma, J., & Huang, W. (2025). A single mutation at position 214 of influenza B hemagglutinin enhances cross-neutralization. Emerg Microbes Infect, 14(1), 2467770. https://doi.org/10.1080/22221751.2025.2467770 [CrossRef] [PubMed] [Google Scholar]
  • Eivazi, S., Majidi, J., Aghebati Maleki, L., Abdolalizadeh, J., Yousefi, M., Ahmadi, M., Dadashi, S., Moradi, Z., & Zolali, E. (2015). Production and Purification of a Polyclonal Antibody Against Purified Mouse IgG2b in Rabbits Towards Designing Mouse Monoclonal Isotyping Kits. Adv Pharm Bull, 5(1), 109-113. https://doi.org/10.5681/apb.2015.015 [PubMed] [Google Scholar]
  • Kazane, S. A., Sok, D., Cho, E. H., Uson, M. L., Kuhn, P., Schultz, P. G., & Smider, V. V. (2012). Site-specific DNA-antibody conjugates for specific and sensitive immuno-PCR. Proceedings of the National Academy of Sciences, 109(10), 3731-3736. [CrossRef] [PubMed] [Google Scholar]
  • Ueda, H., Tsumoto, K., Kubota, K., Suzuki, E., Nagamune, T., Nishimura, H., Schueler, P. A., Winter, G., Kumagai, I., & Mahoney, W. C. (1996). Open sandwich ELISA: a novel immunoassay based on the interchain interaction of antibody variable region. Nature Biotechnology, 14(13), 1714-1718. [CrossRef] [PubMed] [Google Scholar]
  • Khetan, R., Curtis, R., Deane, C. M., Hadsund, J. T., Kar, U., Krawczyk, K., Kuroda, D., Robinson, S. A., Sormanni, P., & Tsumoto, K. (2022). Current advances in biopharmaceutical informatics: guidelines, impact and challenges in the computational developability assessment of antibody therapeutics. MAbs, [Google Scholar]
  • Izadi, S., Patapoff, T. W., & Walters, B. T. (2020). Multiscale coarse-grained approach to investigate self-association of antibodies. Biophysical journal, 118(11), 2741-2754. [CrossRef] [PubMed] [Google Scholar]
  • Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J., & Bambrick, J. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 1-3. [Google Scholar]
  • Myung, Y., Rodrigues, C. H., Ascher, D. B., & Pires, D. E. (2020). mCSM-AB2: guiding rational antibody design using graph-based signatures. Bioinformatics, 36(5), 1453-1459. [CrossRef] [PubMed] [Google Scholar]
  • Feng, S., Chen, Z., Zhang, C., Xie, Y., Ovchinnikov, S., Gao, Y. Q., & Liu, S. (2023). ColabDock: inverting AlphaFold structure prediction model for protein-protein docking with experimental restraints. BioRxiv. [Google Scholar]
  • Cohen, T., Halfon, M., & Schneidman-Duhovny, D. (2022). NanoNet: Rapid and accurate end-to-end nanobody modeling by deep learning. Front Immunol, 13, 958584. https://doi.org/10.3389/fimmu.2022.958584 [PubMed] [Google Scholar]
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P., & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2 [CrossRef] [PubMed] [Google Scholar]
  • Pierce, B. G., Wiehe, K., Hwang, H., Kim, B.-H., Vreven, T., & Weng, Z. (2014). ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics, 30(12), 1771-1773. https://doi.org/10.1093/bioinformatics/btu097 [CrossRef] [PubMed] [Google Scholar]
  • Pierce, B., & Weng, Z. (2007). ZRANK: reranking protein docking predictions with an optimized energy function. Proteins, 67(4), 1078-1086. https://doi.org/10.1002/prot.21373 [CrossRef] [PubMed] [Google Scholar]
  • Leman, J. K., Weitzner, B. D., Lewis, S. M., Adolf-Bryfogle, J., Alam, N., Alford, R. F., Aprahamian, M., Baker, D., Barlow, K. A., & Barth, P. (2020). Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nature methods, 17(7), 665-680. [CrossRef] [PubMed] [Google Scholar]
  • Aimo, A., Vergaro, G., Ripoli, A., Bayes-Genis, A., Pascual Figal, D. A., de Boer, R. A., Lassus, J., Mebazaa, A., Gayat, E., & Breidthardt, T. (2017). Meta-analysis of soluble suppression of tumorigenicity-2 and prognosis in acute heart failure. JACC: Heart Failure, 5(4), 287-296. [CrossRef] [Google Scholar]
  • Eswar, N., Eramian, D., Webb, B., Shen, M.-Y., & Sali, A. (2008). Protein structure modeling with MODELLER. Structural proteomics: high-throughput methods, 145-159. [Google Scholar]
  • Liu, X., Hammel, M., He, Y., Tainer, J. A., Jeng, U.- S., Zhang, L., Wang, S., & Wang, X. (2013). Structural insights into the interaction of IL-33 with its receptors. Proceedings of the National Academy of Sciences, 110(37), 14918-14923. [CrossRef] [PubMed] [Google Scholar]
  • Ramaraj, T., Angel, T., Dratz, E. A., Jesaitis, A. J., & Mumey, B. (2012). Antigen–antibody interface properties: Composition, residue interactions, and features of 53 non-redundant structures. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1824(3), 520-532. [CrossRef] [Google Scholar]
  • Ma, W., Yang, L., & He, L. (2018). Overview of the detection methods for equilibrium dissociation constant KD of drug-receptor interaction. Journal of pharmaceutical analysis, 8(3), 147-152. [CrossRef] [PubMed] [Google Scholar]
  • Swift, M. L. (1997). GraphPad prism, data analysis, and scientific graphing. Journal of chemical information and computer sciences, 37(2), 411-412. [CrossRef] [Google Scholar]
  • Wang, M., Zhu, D., Zhu, J., Nussinov, R., & Ma, B. (2018). Local and global anatomy of antibody‐protein antigen recognition. Journal of Molecular Recognition, 31(5), e2693. [CrossRef] [PubMed] [Google Scholar]
  • Fernández-Quintero, M. L., Kokot, J., Waibl, F., Fischer, A.-L. M., Quoika, P. K., Deane, C. M., & Liedl, K. R. (2023). Challenges in antibody structure prediction. MAbs, [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.