Open Access
Issue |
BIO Web Conf.
Volume 184, 2025
The 3rd International Seminar of the Indonesian Society for Biochemistry and Molecular Biology (ISISBMB 2025)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 16 | |
Section | Biochemistry Innovations in Agriculture | |
DOI | https://doi.org/10.1051/bioconf/202518402001 | |
Published online | 12 August 2025 |
- J.V. da Graça, G.W. Douhan, S.E. Halbert, M.L. Keremane, R.F. Lee, G. Vidalakis, H. Zhao, Huanglongbing: an overview of a complex pathosystem ravaging the world's citrus. J. Integr. Plant Biol. 58, 373-387 (2016). https://doi.org/ 10.1111/jipb. 12437 [Google Scholar]
- S. Munir, P. He, Y. Wu, P. He, S. Khan, M. Huang, W. Cui, P. He, Y. He, Y, Huanglongbing control: perhaps the end of the beginning. Microb. Ecol. 76, 192-204 (2018). https://doi.org/10.1007/s00248-017-1123-7 [Google Scholar]
- S. Welker, M. Pierre, J.P. Santiago, M. Dutt, C. Vincent, A. Levy, Phloem transport limitation in Huanglongbing-affected sweet orange is dependent on phloem-limited bacteria and callose. Tree Physiol. 42, 379-390 (2022). https://doi.org/10.1093/treephys/tpab134 [Google Scholar]
- J.M. Bové, Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 88, 7-37 (2006). https://doi.org/10.1371/journal.pone.0111032 [Google Scholar]
- B. Alquézar, L. Carmona, S. Bennici, M.P. Miranda, R.B. Bassanezi, L. Pena, Cultural management of Huanglongbing: current status and ongoing research. Phytopathology. 112, 11-25 (2022). https://doi.org/10.1094/PHYTO-08-21-0358-IA [Google Scholar]
- S. Tirtawidjaja, T. Hadiwidjaja, A.M. Lasheen, Citrus vein phloem degeneration virus, a possible cause of citrus chlorosis in Java. Proc. Amer. Soc. Hort. Sci. 86, 235-243 (1965). [Google Scholar]
- Nurhadi, Penyakit Huanglongbing tanaman jeruk (Candidatus Liberibacter asiaticus): ancaman dan strategi pengendalian. Pengemb. Inov. Pertan. 8, 21-32 (2015). [Google Scholar]
- M.M.H. Tipu, M.M. Masud, R. Jahan, A. Baroi, A.K.M.A. Hoque, Identification of citrus greening based on visual symptoms: a grower's diagnostic toolkit. Heliyon. 7, e08387 (2021). https://doi.org/10.1016/j.heliyon.2021.e08387 [Google Scholar]
- Y. Sariasih, S. Subandiyah, S. Widyaningsih, T. Khurshid, J. Mo, N. Donovan, Comparison of two Huanglongbing detection methods in samples with different symptom severity. J. Fitopatol. Indones. 20, 174-186 (2024). https://doi.org/10.14692/jfi.20.4.174-186 [Google Scholar]
- B.M. Dala-Paula, A. Plotto, J. Bai, J.A. Manthey, E.A. Baldwin, R.S. Ferrarezi, M.B.A. Gloria, Effect of Huanglongbing or greening disease on orange juice quality, a review. Front. Plant Sci. 9, 1976 (2019). https://doi.org/10.3389/fpls.2018.01976 [Google Scholar]
- M.L. Keremane, C. Ramadugu, E. Rodriguez, R. Kubota, S. Shibata, D.G. Hall, M.L. Roose, D. Jenkins, R.F. Lee, A rapid field detection system for citrus Huanglongbing associated 'Candidatus Liberibacter asiaticus' from the psyllid vector, Diaphorina citri Kuwayama and its implications in disease management. Crop Prot. 68, 41-48 (2015). https://doi.org/10.1016/j.cropro.2014.10.026 [Google Scholar]
- C.W. Choi, J.W. Hyun, C.A. Powell, Loop-mediated isothermal amplification assay for detection of Candidatus Liberibacter asiaticus, a causal agent of citrus Huanglongbing. Plant Pathol. J. 34, 499-505 (2018). https://doi.org/10.5423/PPJ.FT.10.2018.0212 [Google Scholar]
- M. Rizal, K.H. Mutaqin, G. Suastika, Deteksi dan evaluasi keragaman genetika Candidatus Liberibacter asiaticus sebagai penyebab penyakit Huanglongbing di Indonesia berdasarkan gen ß-operon. J. Fitopatol. Indones. 12, 168-177 (2016). https://doi.org/10.14692/jfi.12.5.168 [Google Scholar]
- E. Saberi, S.M. Alavi, N. Safaie, C. Moslemkhany, M. Azadvar, Bacterial pathogens associated with citrus Huanglongbing-like symptoms in Southern Iran. J. Crop Prot. 6, 99-113 (2017). [Google Scholar]
- M.S. Yaqub, I.A. Khan, M. Usman, I.A. Rana, Molecular detection of Candidatus Liberibacter asiaticus, the causal organism of Huanglongbing (citrus greening) in Faisalabad, Pakistan for Huanglongbing management. Pak. J. Agri. Sci. 54, 21-26 (2017). https://doi.org/10.21162/PAKJAS/17.4455 [Google Scholar]
- I.G. Orce, L.N. Sendin, M.R. Marano, A.A. Vojnov, A.P. Castagnaro, M.P. Filippone, Novel set of real-time PCR primers for simultaneous detection of Liberibacter species associated with citrus Huanglongbing. Sci. Agric. 72, 252-259 (2015). https://doi.org/10.1590/0103-9016-2013-0417 [Google Scholar]
- J.W. Park, E.S. Louzada, W.E. Braswell, P.A. Stansly, J.V. da Graça, G. McCollum, J.E. Rascoe, M. Kunta, A new diagnostic real-time PCR method for Huanglongbing detection in citrus root tissue. J. Gen. Plant Pathol. 84, 359-367 (2018). https://doi.org/10.1007/s10327-018-0793-4 [Google Scholar]
- G. Cellier, C. Redondo, J. Cubero, M. Rosellö, E. de Andrade, L. Cruz, E. Ince, H.N. Yildiz, P.G. Güler, A.M. D'Onghia, T. Yaseen, K. Djelouah, E. Metz-Verschure, F. Gaffuri, R.A. Gottsberger, B. Giovani B, Comparison of the performance of the main real-time and conventional PCR detection tests for 'Candidatus Liberibacter'spp., plant pathogenic bacteria causing the Huanglongbing disease in Citrus spp. Eur. J. Plant Pathol. 157, 919-941 (2020). https://doi.org/10.1007/s10658-020-02052-3 [Google Scholar]
- M.L. Keremane, T.G. McCollum, M.L. Roose, R.F. Lee, C. Ramadugu, An improved reference gene for detection of "Candidatus Liberibacter asiaticus" associated with citrus Huanglongbing by qPCR and digital droplet PCR assays. Plants. 10, 2111 (2021). https://doi.org/10.3390/plants10102111 [Google Scholar]
- M.R.V. Pérez, M.G.G. Mendoza, M.G.R. Elias, F.J. Gonzalez, H.R.N. Contreras, C.C. Servin, Raman spectroscopy an option for the early detection of citrus Huanglongbing. Appl. Spectrosc. 70, 829-839 (2016). https://doi.org/10.1177/0003702816638229 [Google Scholar]
- K. Wang, Y. Liao, Y. Meng, X. Jiao, W. Huang, T.C.Y. Liu, The early, rapid, and nondestructive detection of citrus Huanglongbing (HLB) based on microscopic confocal Raman. Food Anal. Methods. 12, 2500-2508 (2019). https://doi.org/10.1007/s12161-019-01598-1 [Google Scholar]
- L. Sanchez, S. Pant, K. Mandadi, D. Kurouski, Raman spectroscopy vs quantitative polymerase chain reaction in early stage Huanglongbing diagnostics. Sci. Rep. 10, 10101 (2020). https://doi.org/10.1038/s41598-020-67148-6 [Google Scholar]
- R.A. Valdés, J.C.D. Ortiz, M.B. Beache, J.A. Cabello, E.C. Chavez, Y.R. Pagaza, Y.M.O. Fuentes, A review of techniques for detecting Huanglongbing (greening) in citrus. Can. J. Microbiol. 62, 803-811 (2016). https://doi.org/10.1139/cjm-2016-0022 [Google Scholar]
- S. Jagoueix, J.M. Bové, M. Garnier, PCR detection of the two 'Candidatus' Liberobacter species associated with greening disease of citrus. Mol. Cell. Probes. 10, 43-50 (1996). [Google Scholar]
- A. Hocquellet, P. Toorawa, J.M. Bové, M. Garnier. 1999. Detection and identification of the two Candidatus Liberobacter species associated with citrus Huanglongbing by PCR amplification of ribosomal protein genes of the beta operon. Mol. Cell. Probes. 13, 373-379. https://doi.org/10.1006/mcpr.1999.0263 [Google Scholar]
- M.A. Hoy, A. Jeyaprakash, R. Nguyen, 2001 Long PCR is a sensitive method for detecting Liberobacter asiaticum in parasitoids undergoing risk assessment in quarantine. Biol. Control. 22, 278-287 (2001). https://doi.org/10.1006/bcon.2001.0973 [Google Scholar]
- D.C. Teixeira, J.L. Danet, S. Eveillard, E.C. Martins, W.C. Jesus Jr., P.T. Yamamoto, S.A. Lopes, E.B. Bassanezi, A.J. Ayres, C. Saillard, JM, Citrus Huanglongbing in Sào Paulo, Brazil: PCR detection of the 'Candidatus Liberibacter' species associated with the disease. Mol. Cell. Probes. 19, 173-179 (2005). https://doi.org/10.1016/j.mcp.2004.11.002 [Google Scholar]
- T. Fujikawa, T. Iwanami, Sensitive and robust detection of citrus greening (Huanglongbing) bacterium "Candidatus Liberibacter asiaticus" by DNA amplification with new 16s rDNA-specific primers. Mol. Cell. Probes. 26, 194-197 (2012). http://doi.org/10.1016/j.mcp.2012.06.001 [Google Scholar]
- M. Nageswara-Rao, M. Irey, S.M. Garnsey, S. Gowda, Candidate gene makers for Candidatus Liberibacter asiaticus for detecting citrus greening disease. J. Biosci. 38, 229-237 (2013). https://doi.org/10.1007/s12038-013-9315-x [Google Scholar]
- L. Zhou, C.A. Powell, M.T. Hoffman, W. Li, G. Fan, B. Liu, H. Lin, Y. Duan, Diversity and plasticity of the intracellular plant pathogen and insect symbiont "Candidatus Liberibacter asiaticus" as revealed by hypervariable prophage genes with intragenic tandem repeats. Appl. Environ. Microbiol. 77, 6663-6673 (2011). https://doi.org/10.1128/AEM.05111-11 [Google Scholar]
- J.J. Doyle JJ, J.L. Doyle, Isolation of plant DNA from fresh tissue. Focus. 12, 13-15 (1990). [Google Scholar]
- A. Untergasser, H. Nijveen, X. Rao, T. Bisseling, R. Geurts, J.A.M. Leunissen, Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35, 71-74 (2007). https://doi.org/10.1093/nar/gkm306 [Google Scholar]
- J. Ye, G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen, T. Madden, Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 13, 134 (2012). [CrossRef] [PubMed] [Google Scholar]
- S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment search tool. J. Mol. Biol. 215, 403-410 (1990). https://doi.org/10.1016/S0022-2836(05)80360-2 [Google Scholar]
- S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547-1549 (2018). https://doi.org/10.1093/molbev/msy096 [Google Scholar]
- A. Varma, H. Padh, N. Shrivastava, Plant genomic DNA isolation: an art or a science. Biotechnol. J. 2, 386-392 (2007). https://doi.org/10.1002/biot.200600195 [Google Scholar]
- Syafaruddin, T.J. Santoso, Optimasi teknik isolasi dan purifikasi DNA yang efisien dan efektif pada kemiri sunan (Reutalis trisperma (Blanco) Airy Shaw). J. Littri. 17, 11-17 (2011). [Google Scholar]
- T.R. Gottwald, Current epidemiological understanding of citrus Huanglongbing. Annu. Rev. Phytopathol. 48, 119-139 (2010). https://doi.org/10.1146/annurev-phyto-073009-114418 [Google Scholar]
- Z. Xia, M.L. Johansson, Y. Gao, L. Zhang, G.D. Haffner, H.J. MacIsaac, A. Zhan, Conventional versus real-time quantitative PCR for rare species detection. Ecol. Evol. 8, 11799-11807 (2018). https://doi.org/10.1002/ece3.4636 [Google Scholar]
- Y. Lan, G. Rosen, R. Hershberg, Marker genes that are less conserved in their sequences are useful for predicting genome-wide similarity levels between closely related prokaryotic strains. Microbiome. 4, 18 (2016). https://doi.org/10.1186/s40168-016-0162-5 [Google Scholar]
- M.P. Maela, M.H. Serepa-Dlamini, Genome sequence and characterisation of Peribacillus sp. strain AS_2, a bacterial endophyte isolated from Alectra sessiliflora. Microbiol. Res. 15, 50-65 (2023). https://doi.org/10.3 3 90/microbiolres15010004 [Google Scholar]
- J. Shin, S. Park, J.S. Lee, E.J. Lee, H.D. Youn, Complete genome sequence and comparative analysis of Streptomyces seoulensis, a pioneer strain of nickel superoxide dismutase. Genes Genom. 42, 273-281 (2020). https://doi.org/10.1007/s13258-019-00878-8 [Google Scholar]
- L. Ni, Y. Xu, L. Chen L, First experimental evidence for the presence of potentially virulent Klebsiella oxytoca in 14 species of commonly consumed aquatic animals, and phenotyping, and genotyping of K. oxytoca isolates. Antibiotics. 10, 1235 (2021). https://doi.org/10.3390/antibiotics10101235 [Google Scholar]
- T. Maeda, M. Kawada, N. Sakata, H. Kotani, C. Furusawa, Laboratory evolution of Mycobacterium on agar plates for analysis of resistance acquisition and drug sensitivity profiles. Sci. Rep. 11, 15136 (2021). https://doi.org/10.1038/s41598-021-94645-z [Google Scholar]
- D.V. Evsyutina, T.A. Semashko, M.A. Galyamina, S.I. Kovalchuk, R.H. Ziganshin, V.G. Ladygina, G.Y. Fisunov, O.V. Pobeguts, Molecular basis of the slow growth of Mycoplasma hominis on different energy sources. Front. Cell. Infect. Microbiol. 12, 918557 (2022). https://doi.org/10.3389/fcimb.2022.918557 [Google Scholar]
- J.M. Schröder, Discovery of natural bispecific antibodies: is psoriasis induced by a toxigenic Corynebacterium simulans and maintained by CIDAMPs as autoantigens?. Exp. Dermatol. 33, e15014 (2024). https://doi.org/10.1111/exd.15014 [Google Scholar]
- S. Giengkam, C. Kullapanich, J. Wongsantichon, H.E. Adcox, J.J. Gillespie, J. Salje. 2023. Orientia tsutsugamushi: comprehensive analysis of the mobilome of a highly fragmented and repetitive genome reveals the capacity for ongoing lateral gene transfer in an obligate intracellular bacterium. Msphere. 8, e00268-23 (2023). https://doi.org/10.1128/msphere.00268-23 [Google Scholar]
- K.A. Klag, A.M. Weis, W.Z. Stephens, J.L. Round, Draft Turicibacter sp. genome isolated from a spore-forming community in mice. Microbiol. Resour. Announc. 13, e00385-24 (2024). https://doi.org/10.1128/mra.00385-24 [Google Scholar]
- A.A. Arratia-Castro, M.E. Santos-Cervantes, E. Fernândez-Herrera, J.A. Châvez-Medina, G.L. Flores-Zamora, E. Camacho-Beltrân, J. Méndez-Lozano, N.E. Leyva-Löpez. 2014. Occurrence of 'Candidatus Phytoplasma asteris' in citrus showing Huanglongbing symptoms in Mexico. Crop Pro.t 62, 144e151 (2014). http://doi.org/10.1016/j.cropro.2014.04.020 [Google Scholar]
- M.M.H. Tipu, M.M. Rahman, M.M. Islam, F.E. Elahi, R. Jahan, M.R. Islam, Citrus greening disease (HLB) on Citrus reticulata (Mandarin) caused by Candidatus Liberibacter asiaticus in Bangladesh. Physiol. Mol. Plant Pathol. 112, 101558 (2020). https://doi.org/10.1016/j.pmpp.2020.101558 [Google Scholar]
- D.K. Ghosh, A.D. Kokane, S.B. Kokane, J. Tenzin, M.G. Gubyad, P. Wangdi, A.A. Murkute, A.K. Sharma, S. Gowda. 2021. Detection and molecular characterization of 'Candidatus Liberibacter asiaticus' and Citrus Tristeza Virus associated with citrus decline in Bhutan. Phytopathology. 111, 870-881 (2021). https://doi.org/10.1094/PHYTO-07-20-0266-R [Google Scholar]
- X. Martini, A. Hoyte, L.L. Stelinski, Abdominal color of the Asian citrus psyllid (Hemiptera: Liviidae) is associated with flight capabilities. Ann. Entomol. Soc. Am. 107, 842-847 (2014). https://doi.org/10.1603/AN14028 [Google Scholar]
- T.R. Gottwald, J.V. da Graça, R.B. Bassanezi, Citrus Huanglongbing: the pathogen and its impact. Plant Health Prog. (2007). https://doi.org/10.1094/PHP-2007-0906-01-RV [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.