Open Access
| Issue |
BIO Web Conf.
Volume 192, 2025
6th International Conference on Smart and Innovative Agriculture (ICoSIA 2025)
|
|
|---|---|---|
| Article Number | 01004 | |
| Number of page(s) | 6 | |
| Section | Precision Agriculture and Smart Farming | |
| DOI | https://doi.org/10.1051/bioconf/202519201004 | |
| Published online | 24 October 2025 | |
- P. Data, “Realisasi Ekspor Impor Gula Nira Kelapa ( Hs 17029051 ) dan Buah Lontar ( Hs 08119000 ) Indonesia Periode 2018 2024,” no. Hs 17029051, 2024, [Online]. Available: https://satudata.kemendag.go.id/ringkasan/produk/realisasi-ekspor-impor-gula-nira-kelapa-dan-buah-lontar-periode-2018-2024-jan-feb [Google Scholar]
- A. Saraiva, C. Carrascosa, F. Ramos, D. Raheem, M. Lopes, and A. Raposo, “Coconut Sugar: Chemical Analysis and Nutritional Profile; Health Impacts; Safety and Quality Control; Food Industry Applications,” Int. J. Environ. Res. Public Health, vol. 20, no. 4, p. 3671, 2023, doi: 10.3390/ijerph20043671. [Google Scholar]
- R. Pandiselvam et al., “Reaction kinetics of physico-chemical attributes in coconut inflorescence sap during fermentation,” J. Food Sci. Technol., vol. 58, no. 9, pp. 3589–3597, 2021, doi: 10.1007/s13197-021-05088-3. [Google Scholar]
- K. B. Hebbar et al., “Coconut inflorescence sap and its value addition as sugar Collection techniques, yield, properties and market perspective,” Curr. Sci., vol. 109, no. 8, pp. 1411–1417, 2015, doi: 10.18520/v109/i8/1411-1417. [Google Scholar]
- B. B. Borse, L. J. M. Rao, K. Ramalakshmi, and B. Raghavan, “Chemical composition of volatiles from coconut sap (neera) and effect of processing,” Food Chem., vol. 101, no. 3, pp. 877–880, Jan. 2007, doi: 10.1016/j.foodchem.2006.02.026. [Google Scholar]
- J. Wiboonsirikul, P. Ongkunaruk, and P. Poonpan, “Determining key factors affecting coconut sap quality after harvesting,” Heliyon, vol. 10, no. 8, 2024, doi: 10.1016/j.heliyon.2024.e29002. [Google Scholar]
- Maria Regina Femi B., N. Malhija, Mary T. Sherin, and Kumaran T., “Coconut_Cocos_nucifera_Inflorescence_Sap_Nutrition,” J. Basic Appl. Res. Biomed., vol. 6, no. 1, p. 50, 2020. [Google Scholar]
- S. Kang, Q. Zhang, Z. Li, C. Yin, N. Feng, and Y. Shi, “Determination of the quality of tea from different picking periods: An adaptive pooling attention mechanism coupled with an electronic nose,” Postharvest Biol. Technol., vol. 197, 2023, doi: 10.1016/j.postharvbio.2022.112214. [Google Scholar]
- C. Gonzalez Viejo, E. Tongson, and S. Fuentes, “Integrating a low‐cost electronic nose and machine learning modelling to assess coffee aroma profile and intensity,” Sensors, vol. 21, no. 6, pp. 1–16, 2021, doi: 10.3390/s21062016. [Google Scholar]
- A. Feyzioglu and Y. S. Taspinar, “Beef Quality Classification with Reduced E-Nose Data Features According to Beef Cut Types,” Sensors, vol. 23, no. 4, pp. 12–14, 2023, doi: 10.3390/s23042222. [Google Scholar]
- F. Chen et al., “Characterization of flavor perception and characteristic aroma of traditional dry-cured fish by flavor omics combined with multivariate statistics,” LWT, vol. 173, p. 114240, 2023, doi: https://doi.org/10.1016/j.lwt.2022.114240. [Google Scholar]
- E. S. A. Nugraha, N. D. Resty, Y. I. T. Wijaya, and B. Sumanto, “Electronic Nose to Classify Tobacco Origin using a Naive Bayes Method based on Feature Selection,” ICCoSITE 2023 Int. Conf. Comput. Sci. Inf. Technol. Eng. Digit. Transform. Strateg. Facing VUCA TUNA Era, pp. 267–272, 2023, doi: 10.1109/ICCoSITE57641.2023.10127800. [Google Scholar]
- M. Ghasemi-Varnamkhasti, A. Mohammad-Razdari, S. H. Yoosefian, Z. Izadi, and G. Rabiei, “Selection of an optimized metal oxide semiconductor sensor (MOS) array for freshness characterization of strawberry in polymer packages using response surface method (RSM),” Postharvest Biol. Technol., vol. 151, pp. 53–60, May 2019, doi: 10.1016/j.postharvbio.2019.01.016. [Google Scholar]
- H. Liu, Q. Li, B. Yan, L. Zhang, and Y. Gu, “Bionic electronic nose based on mos sensors array and machine learning algorithms used for wine properties detection,” Sensors (Switzerland), vol. 19, no. 1, 2019, doi: 10.3390/s19010045. [Google Scholar]
- N. F. Boakye, C. C. O’Toole, A. Jalali, and A. Hannigan, “Comparing logistic regression and machine learning for obesity risk prediction: A systematic review and meta-analysis,” Int. J. Med. Inform., vol. 199, no. January, p. 105887, 2025, doi: 10.1016/j.ijmedinf.2025.105887. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

