Issue |
BIO Web Conf.
Volume 13, 2019
CO.NA.VI. 2018 - 7° Convegno Nazionale di Viticoltura
|
|
---|---|---|
Article Number | 04003 | |
Number of page(s) | 5 | |
Section | Vineyard Management and Adaptation to Climate Change | |
DOI | https://doi.org/10.1051/bioconf/20191304003 | |
Published online | 01 April 2019 |
Effects of delayed winter pruning on vine performance and grape composition in cv. Merlot
Department of Agricultural and Food Sciences DISTAL - University of Bologna, Viale Fanin 44,
Bologna, Italy
* Correspondingauthor: e-mail: gianluca.allegro2@unibo.it
Delaying winter pruning until after budburst is a technique that can retard vine phenological phases and reduce grape sugar concentration at harvest. Given these characteristics, many studies have recently been conducted to verify the ability of pruning after budburst to contrast the negative effects of climate change. In our trial, vines of the cv. Merlot, trained to a VSP spur pruned cordon, were pre-pruned leaving 8 nodes per shoot and hand finished when the shoots sprouted by the apical nodes were at BBCH13 (treatment LP) and BBCH18 stage (treatment VLP). Vines refinished during winter were used as control (WP). Anthocyanins and tannins of skin and seeds were analysed after both exhaustive extraction (total content) and extraction conducted with a hydroalcoholic solution (extractable portion). Vines refinished after budburst showed reduced leaf area, yield, cluster and berry weights; technological maturity of these vines was delayed as lower sugar concentration and pH were observed at harvest. Treatment VLP had a stronger effect than LP on these parameters. Considering phenolic compounds, the skin and seed tannin concentration increased only in VLP, while no effect was found on anthocyanins. In conclusion, delaying pruning until after budburst revealed interesting prospects for contrasting the negative effects of climate change.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.