Issue |
BIO Web Conf.
Volume 17, 2020
International Scientific-Practical Conference “Agriculture and Food Security: Technology, Innovation, Markets, Human Resources” (FIES 2019)
|
|
---|---|---|
Article Number | 00133 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/bioconf/20201700133 | |
Published online | 28 February 2020 |
Finite element shear models of thin-walled structures of water management systems of agro-industrial complex
1
Volgograd State Agrarian University, 400002 Volgograd, Russia
2
Moscow State University, 119992 Moscow, Russia
* Corresponding author: Klotchkov@bk.ru
The article presents an algorithm for constructing a finite element model of deformation of thin-walled structures such as pipelines, tanks, bunkers included in the structure of the agro-industrial complex. The proposed model takes into account the deformation of the transverse shear. As a finite element, it is proposed to use a quadrangular fragment of the middle surface of a thin-walled structure of the agro-industrial complex with nodes located at its vertices. The components of the displacement vector and their partial derivatives of the first order with respect to curvilinear coordinates, as well as the components of the normal rotation angle vector, were chosen as the required unknowns. In the construction of the finite element model, the developed interpolation procedure was used for the components of the displacement vector and the component of the normal rotation angle vector as components of vector fields. The efficiency of the proposed finite element models in terms of a significant increase in the accuracy of calculations, the convergence of the computational process and the adequacy of the results to the physical meaning of the problem was proved on the numerical example of the calculation of the pipeline fragment.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.