Issue |
BIO Web Conf.
Volume 21, 2020
XI International Scientific and Practical Conference “Biological Plant Protection is the Basis of Agroecosystems Stabilization”
|
|
---|---|---|
Article Number | 00020 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/bioconf/20202100020 | |
Published online | 22 June 2020 |
Pathogenic post-effect of entomopathogenic fungi on phytophagous pests and entomophagous biocontrol agents
All-Russian Institute of Plant Protection, sh. Podbelskogo 3, St. Petersburg, Pushkin 196608 Russia
* Corresponding author: vapavlyushin@vizr.spb.ru
Phytosanitary optimization of agricultural ecosystems under conditions of glasshouses and organic farming urgently demands guaranteed effect of plant protection. This can be achieved only through effective exploitation of a complex of biological agents, including arthropod predators and parasites, entomopathogenic fungi, nematodes and other microbes. Entomopathogenic fungi Beauveria bassiana and Lecanicillium muscarium are characterized by facultative parasitism and possess high potential to control phytophagous insects, including pests of vegetable crops in glasshouses. In aphids, fungal pathogenesis was found to be comprised of primary mycosis and toxigenic post-effect in a row of consequent generations. For example, L. muscarium and B. bassiana had an adverse effect on fertility and survival rates of females of aphids Aphis gossypii up to the fifth generation. The longevity, reproductive period and amount of progeny were decreased in aphids treated with water suspension of fungal conidia. It can be deduced that the post-effect is caused by toxic action of metabolites as no evident mycosis was observed in the experiments. Similar type of after-effect is observed in the lacewing Chrysopa carnea contaminated with fungal conidia. The effect is also toxigenic being most prominent in the first generation of the survivors’ progeny and traceable up to the fifth generation. The consequences of the infection are best seen in the rate adult emergence which is twice as low as compared to control. This knowledge is essential to avoid antagonism between different groups of natural enemies exploited in biological control and to design adequate technology for their application.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.