Issue |
BIO Web Conf.
Volume 25, 2020
International Scientific Online-Conference “Bioengineering in the Organization of Processes Concerning Breeding and Reproduction of Perennial Crops” 2020
|
|
---|---|---|
Article Number | 02013 | |
Number of page(s) | 6 | |
Section | The Fundamental Basis of Breeding and Improving of Horticultural Crops and Grape Varieties | |
DOI | https://doi.org/10.1051/bioconf/20202502013 | |
Published online | 01 October 2020 |
The influence of downy mildew tolerance of grape varieties on the biosynthesis of stilbenes in callus as potential sources of bioactive substances*
Federal State Budget Scientific Institution «North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-making», 39 str. 40 Let Pobedy, Krasnodar, 350901, Russia
** Corresponding author: mari.sundy@bk.ru
Stilbenes represent a considerable practical interest in relation to their benifits to the human health. Callus culture of the grape, which is a natural producer of stilbenes, can serve as an effective source of these compounds. Grape’s resistance to biotic environmental stress conditions is associated with the synthesis and conversion of stilbenes, therefore the aim of the current study was to determine an interrelation between the tolerance of grape varieties to downy mildew and stilbene biosynthesis in the callus culture. Obtained results showed that there was no link between variety’s tolerance to downy mildew and content of stilbenes, chalcones and phenoloxydising enzymes in callus. Presence of the stress impact is a necessary condition for the initiation of the variety-specific synthesis of stilbenes. Callus of varieties, in which stilbenes content was higher, was characterized by a lowered expression of the chalcone synthase and chalcone isomerase relative to expression of genes of the stilbene synthase and phenylalanine ammonia liase, which confirms an interrelation between reduced competition for the substrate between two biosynthesis branches of chalcones and stilbenes with production of the latter.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.