Issue |
BIO Web Conf.
Volume 45, 2022
68th Scientific Conference with International Participation “FOOD SCIENCE, ENGINEERING AND TECHNOLOGY – 2021”
|
|
---|---|---|
Article Number | 02009 | |
Number of page(s) | 11 | |
Section | Food Chemistry, Microbiology and Biotechnology | |
DOI | https://doi.org/10.1051/bioconf/20224502009 | |
Published online | 04 February 2022 |
Ligninolytic enzymes in Basidiomycetes and their application in xenobiotics degradation
1 Department of Biotechnology, University of Food Technologies, Plovdiv, Bulgaria
2 Department of Chemical Technologies, Asen Zlatarov University, Burgas, Bulgaria
* Corresponding author: mbrazkova@uft-plovdiv.bg
Variety of microorganisms have already proven their capabilities for degradation of wide range of wastes with anthropogenic nature. These pollutants, both liquid and solids, also include so called xenobiotics like phenol and its derivatives, PAHs, dyes, pesticides, pharmaceuticals, etc. Xenobiotics as bisphenol A (BPA), chlorhexidine (CHX), octenidine (OCT), other disinfectants and antiseptics have high ecotoxicological impact. Moreover, they can also impair our quality of life and our health interfering different metabolic and hormone receptors pathways in human body. Chemical treatment of such wastes is not a viable option because of its poor socio-economics and environmental merits. Therefore, applying effective, ecofriendly and cheap treatment methods is of great importance. Basidiomycetes are extensively investigated for their abilities to degrade numerous pollutants and xenobiotics. Through their extracellular ligninolytic enzymes they are capable of reducing or completely removing wide range of hazardous compounds. These enzymes can be categorized in two groups: oxidases (laccase) and peroxidases (manganese peroxidase, lignin peroxidase, versatile peroxidase). Due to the broad substrate specificity of the secreted enzymes Basidiomycetes can be applied as a powerful tool for bioremediation of diverse xenobiotics and recalcitrant compounds.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.