Issue |
BIO Web Conf.
Volume 68, 2023
44th World Congress of Vine and Wine
|
|
---|---|---|
Article Number | 04010 | |
Number of page(s) | 7 | |
Section | Health | |
DOI | https://doi.org/10.1051/bioconf/20236804010 | |
Published online | 23 November 2023 |
Un nuevo método basado en inteligencia artificial para evaluar la ingesta individual de vino
1 Institute of Physics of Cantabria (IFCA), CSIC - UC, 39005 Santander (Cantabria), Spain
2 Institute of Food Science Research (CIAL), CSIC-UAM, 28049 Madrid, Spain
3 Institute of Grapevine and Wine Sciences (ICVV), CSIC-University of La Rioja-Government of La Rioja, 26007 Logroño (La Rioja), Spain
4 Grupo de investigación Antioxidantes, Departamento de Tecnología de Alimentos, Centro de Investigación Agrotecnio, Universidad de Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
5 Infectious Diseases, Microbiota and Metabolism Unit, Center for Biomedical Research of La Rioja (CIBIR), CSIC Associated Unit. 26006 Logroño (La Rioja), Spain
Este estudio surge de la necesidad de nuevas metodologías que permitan cuantificar el consumo de vino con mayor precisión, para posteriormente utilizar esta información en estudios observacionales de alimentación-salud y estudios de intervención de dieta. Se ha desarrollado un algoritmo basado en un método de “aprendizaje profundo”, que permite determinar el volumen de vino en una copa/vaso a partir de una fotografía, y se ha validado en un estudio de consumidores realizado a través de una aplicación web. La aplicación del modelo a imágenes “cuasi-reales” y a imágenes "reales" (obtenidas a partir del estudio de consumidores), ha mostrado una precisión satisfactoria con un error absoluto medio (MAE) de 10 mL y 26 mL, respectivamente. En relación a las pautas de consumo de vino observadas en el estudio de consumidores (n=38), el volumen medio de vino tinto servido en una copa fue de 114±33 mL, sin estar condicionado por factores como el sexo del consumidor, el momento de consumo, el tipo de vino, o el formato de copa/vaso. En síntesis, el sistema de aprendizaje profundo desarrollado junto con la aplicación web, constituyen una herramienta de gran valor para la estimación precisa del volumen de vino consumido diariamente, así como las pautas de su consumo, de gran utilidad para estudios poblacionales.
Abstract
This study arises from the need to propose new methodologies to quantify wine consumption more precisely in order to use subsequently this information in observational food-health studies and dietary intervention studies. It has been developed an algorithm based on a “deep learning” method to determine wine volume from a single-view image, and it has been validated through a consumer study developed via a web application. The new model demonstrated satisfactory performance not only in a “daily lifelike” images dataset but also in “real” images (obtained from the consumer study), with a mean absolute error (MAE) of 10 and 26 mL, respectively. In relation to the data reported by the participants in the consumer study (n=38), average red wine volume in a glass was 114±33 mL, without being affected by factors such as gender, time of consumption, type of wine or type of glass. Therefore, the deep learning system together with the web application developed in this study constitute a diet monitoring tool of substantial value in the accurate assessment of daily wine intake, as well as in the habits of its consumption, with relevant applications in observational studies.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.