Issue |
BIO Web Conf.
Volume 69, 2023
The 2nd International Conference on Agriculture, Food, and Environment (2nd ICAFE 2023)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 10 | |
Section | Soil and Water Management | |
DOI | https://doi.org/10.1051/bioconf/20236902003 | |
Published online | 16 October 2023 |
Coupling of Coagulation and Fenton-Like Oxidation for Decolorization of Congo Red Dye in Water
Environmental Engineering Study Program, Department of Civil Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia
1* Corresponding author: adityosulindro@eng.ui.ac.id
Azo dyes are widely utilized in a variety of industries, including food, cosmetics, and textiles. Removal of azo dyes from wastewater by the conventional biological process is challenging due to its toxicity. Alternative treatment technology is needed to remove the dye effectively and in a relatively short duration. The processing technology is expected to be able to reduce pollutant materials before they enter water bodies which are a source of agricultural irrigation. In this work, dye removal was studied in some physical and chemical processes, including coagulation (Coag.), Fenton-like oxidation (FLO), and its combination. Synthetic Congo Red (CR) solution was used as a contaminant model of dye wastewater. The assays were performed in a laboratory Jar-Test apparatus with varying FeCl3 coagulant doses (20-30 mg/L), H2O2 doses (42-1,680 mg/L), and coupling mode (Coag.-FLO; FLO-Coag.; FLO/Coag.). The congo red decolorization up to 87% was observed in the coupling of Coag.-FLO process at 24 mg/L FeCl3, 280 mg/L H2O2, pH 8 (Coag.) and pH 3 (FLO). Compared to the removal efficiency of the Coag. (color removal 45%) and FLO (color removal 62%) under selected circumstances. In addition to the higher CR removal, the coupling Coag.-FLO process showed potential cost saving due to less H2O2 dose and partially shift to coagulant.
Key words: Wastewater treatment / Hybrid treatment / Advanced oxidation process / Fenton process / Dye removal
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.