Open Access
Issue |
BIO Web Conf.
Volume 69, 2023
The 2nd International Conference on Agriculture, Food, and Environment (2nd ICAFE 2023)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 10 | |
Section | Soil and Water Management | |
DOI | https://doi.org/10.1051/bioconf/20236902003 | |
Published online | 16 October 2023 |
- K.-T. Chung, “Azo dyes and human health: A review,” Journal of Environmental Science and Health, Part C, vol. 34, no. 4, pp. 233–261, Oct. 2016, DOI: 10.1080/10590501.2016.1236602. [Google Scholar]
- K. Verma, R. R. Dash, and P. Bhunia, “A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters,” J Environ Manage, vol. 93, no. 1, pp. 154–168, Jan. 2012, DOI: 10.1016/j.jenvman.2011.09.012. [CrossRef] [PubMed] [Google Scholar]
- S. Parmar, S. Daki, S. Bhattacharya, and A. Shrivastav, “Microorganism,” in Development in Wastewater Treatment Research and Processes, Elsevier, 2022, pp. 175–193. DOI: 10.1016/B978-0-323-85657-7.00001-8. [CrossRef] [Google Scholar]
- M. Ghaedi et al., “Modeling of competitive ultrasonic assisted removal of the dyes - Methylene blue and Safranin-O using Fe3O4 nanoparticles,” Chemical Engineering Journal, vol. 268, pp. 28–37, May 2015, DOI: 10.1016/j.cej.2014.12.090. [CrossRef] [Google Scholar]
- B. Monisha, R. Sridharan, P. S. Kumar, G. Rangasamy, V. G. Krishnaswamy, and S. Subhashree, “Sensing of azo toxic dyes using nanomaterials and its health effects - A review,” Chemosphere, vol. 313, p. 137614, Feb. 2023, DOI: 10.1016/j.chemosphere.2022.137614. [CrossRef] [PubMed] [Google Scholar]
- N. R. Khandaker, I. Afreen, D. S. Diba, F. B. Huq, and T. Akter, “Treatment of textile wastewater using calcium hypochlorite oxidation followed by waste iron rust aided rapid filtration for color and COD removal for application in resources challenged Bangladesh,” Groundw Sustain Dev, vol. 10, p. 100342, Apr. 2020, DOI: 10.1016/j.gsd.2020.100342. [CrossRef] [Google Scholar]
- S. R. Qasim, Wastewater Treatment Plants: Planning, Design, and Operation, Second. Boca Raton: CRC Press LCC, 1999. [Google Scholar]
- M. P. Martins, K. Pagilla, J. J. Heijnen, and M. C. M. van Loosdrecht, “Filamentous bulking sludge—a critical review,” Water Res, vol. 38, no. 4, pp. 793–817, Feb. 2004, DOI: 10.1016/j.watres.2003.11.005. [CrossRef] [PubMed] [Google Scholar]
- Q. Sui et al., “Performance of a sequencing-batch membrane bioreactor (SMBR) with an automatic control strategy treating high-strength swine wastewater,” J Hazard Mater, vol. 342, pp. 210–219, Jan. 2018, DOI: 10.1016/j.jhazmat.2017.05.010. [CrossRef] [PubMed] [Google Scholar]
- B. Shi, G. Li, D. Wang, C. Feng, and H. Tang, “Removal of direct dyes by coagulation: The performance of preformed polymeric aluminum species,” J Hazard Mater, vol. 143, no. 1-2, pp. 567–574, May 2007, DOI: 10.1016/j.jhazmat.2006.09.076. [CrossRef] [PubMed] [Google Scholar]
- M. Tiaiba, B. Merzouk, M. Mazour, J. Leclerc, F. Lapicque, and J. P. Leclerc, “Study of chemical coagulation conditions for a disperse red dye removal from aqueous solutions,” Membrane Water Treatment, 2018, DOI: 10.12989/mwt.2018.9.1.009. [Google Scholar]
- S. Raj, H. Singh, and J. Bhattacharya, “Treatment of textile industry wastewater based on coagulation-flocculation aided sedimentation followed by adsorption: Process studies in an industrial ecology concept,” Science of The Total Environment, vol. 857, p. 159464, Jan. 2023, DOI: 10.1016/j.scitotenv.2022.159464. [CrossRef] [Google Scholar]
- O. A. El-Battrawy, M. A. El-Sonbati, E. M. El-Awadly, and T. A. Hegazy, “Study on Ferric Chloride Coagulation Process and Fenton’s Reaction for Pretreatment of Dairy Wastewater,” Curr Sci Int, vol. 09, no. 01, pp. 87–96, Mar. 2020, DOI: 10.36632/csi/2020.9.1.11. [Google Scholar]
- G. Crini and E. Lichtfouse, “Advantages and disadvantages of techniques used for wastewater treatment,” Environ Chem Lett, vol. 17, no. 1, pp. 145–155, Mar. 2019, DOI: 10.1007/s10311-018-0785-9. [CrossRef] [Google Scholar]
- J. J. Pignatello, E. Oliveros, and A. MacKay, “Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry,” Crit Rev Environ Sci Technol, vol. 36, no. 1, pp. 1–84, Jan. 2006, DOI: 10.1080/10643380500326564. [CrossRef] [Google Scholar]
- Babuponnusami and K. Muthukumar, “A review on Fenton and improvements to the Fenton process for wastewater treatment,” J Environ Chem Eng, vol. 2, no. 1, pp. 557–572, Mar. 2014, DOI: 10.1016/j.jece.2013.10.011. [CrossRef] [Google Scholar]
- N. Ertugay and F. N. Acar, “Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study,” Arabian Journal of Chemistry, vol. 10, pp. S1158–S1163, Feb. 2017, DOI: 10.1016/j.arabjc.2013.02.009. [CrossRef] [Google Scholar]
- S. Adityosulindro, A. Rahdhani, and D. M. Hartono, “Heterogeneous fenton oxidation catalysed by rebar flakes waste for removal of methyl orange in water,” Journal of Applied Science and Engineering (Taiwan), vol. 25, no. 3, pp. 381–388, 2021, DOI: 10.6180/jase.202206_25(3).0003. [Google Scholar]
- V. Gomes de Barros et al., “Treatment of biodigested coffee processing wastewater using Fenton’s oxidation and coagulation/flocculation,” Environmental Pollution, vol. 259, Apr. 2020, DOI: 10.1016/j.envpol.2019.113796. [CrossRef] [Google Scholar]
- L. F. Guerreiro, C. S. D. Rodrigues, R. M. Duda, R. A. de Oliveira, R. A. R. Boaventura, and L. M. Madeira, “Treatment of sugarcane vinasse by combination of coagulation/flocculation and Fenton’s oxidation,” J Environ Manage, vol. 181, pp. 237–248, Oct. 2016, DOI: 10.1016/j.jenvman.2016.06.027. [CrossRef] [PubMed] [Google Scholar]
- F. E. Sayın, O. Karatas, İ. Özbay, E. Gengec, and A. Khataee, “Treatment of real printing and packaging wastewater by combination of coagulation with Fenton and photo-Fenton processes,” Chemosphere, vol. 306, Nov. 2022, DOI: 10.1016/j.chemosphere.2022.135539. [Google Scholar]
- Dalvand et al., “Application of Chemical Coagulation Process for Direct Dye Removal from Textile Wastewater,” Journal of Environmental Health and Sustainable Development, vol. 2, no. 3, pp. 333–339, 2017. [Google Scholar]
- Q. Wei et al., “Removal of direct dyes by coagulation: Adaptability and mechanism related to the molecular structure,” Korean Journal of Chemical Engineering, vol. 39, no. 7, pp. 1850–1862, Jul. 2022, DOI: 10.1007/s11814-021-1056-1. [CrossRef] [Google Scholar]
- S. Adityosulindro, C. Julcour, and L. Barthe, “Heterogeneous Fenton oxidation using Fe-ZSM5 catalyst for removal of ibuprofen in wastewater,” J Environ Chem Eng, vol. 6, no. 5, pp. 5920–5928, Oct. 2018, DOI: 10.1016/j.jece.2018.09.007. [CrossRef] [Google Scholar]
- F. Haber and J. Weiss, “The catalytic decomposition of hydrogen peroxide by iron salts,” Proc R Soc Lond A Math Phys Sci, vol. 147, no. 861, pp. 332–351, Nov. 1934, DOI: 10.1098/rspa.1934.0221. [Google Scholar]
- C. S. D. Rodrigues, A. R. Neto, R. M. Duda, R. A. de Oliveira, R. A. R. Boaventura, and L. M. Madeira, “Combination of chemical coagulation, photo-Fenton oxidation and biodegradation for the treatment of vinasse from sugar cane ethanol distillery,” J Clean Prod, vol. 142, pp. 3634–3644, Jan. 2017, DOI: 10.1016/j.jclepro.2016.10.104. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.