Issue |
BIO Web Conf.
Volume 77, 2023
The 3rd International Conference of Lignocellulose (ICONLIG) in conjunction with the 15th International Symposium of IWoRS (ICONLIG-IWoRS 2023)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 7 | |
Section | Characterization, Modelling, and Applications of Plant Biomass Products for a Sustainable Future | |
DOI | https://doi.org/10.1051/bioconf/20237701005 | |
Published online | 28 November 2023 |
Optimization of the drying process of edible film-based cassava starch using response surface methodology
1 Department of Chemical Engineering, Institut Teknologi Sumatera, South Lampung 35365, Indonesia
2 Department of Chemical Engineering of Natural Resource, Polytechnic ATI Padang, West Sumatera 25171, Indonesia
* Corresponding author: dennis.nury@tk.itera.ac.id
Most food packaging consists of plastic which is difficult to degrade. One strategy for addressing this issue is the development of biodegradable polymers from cassava starch, a known of raw material easily produced at low cost and biologically to degrade, hence becoming a low-cost for edible film production. The edible film was prepared by gelatinization method using cassava starch and glycerol as plasticizers. The study was subjected to determine the optimum drying process for cassava starch-based edible film based on the drying condition process with two independent variables: drying temperature (40, 50, and 60°C) and drying time (4, 5, and 6 h) on the mechanical properties. The response surface methodology approach with a central composite design was used for optimization. The experimental data for the optimum drying condition were analyzed to obtain the optimized variables using plots and contours. The optimized edible film occurred at a drying temperature of 63.28 °C and drying time of 3.58 h resulting in a tensile strength of 6640.24 Pa, elongation at break of 1.051%, and water solubility of 55.575%. The study concluded that the optimized drying condition process significantly affected the tensile strength, elongation at break, and water solubility.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.