Issue |
BIO Web Conf.
Volume 80, 2023
4th International Conference on Smart and Innovative Agriculture (ICoSIA 2023)
|
|
---|---|---|
Article Number | 03011 | |
Number of page(s) | 5 | |
Section | Land and Environmental Management | |
DOI | https://doi.org/10.1051/bioconf/20238003011 | |
Published online | 14 December 2023 |
Assessment of Surface Runoff Potency under Tropical Environment for Soil and Water Conservation Planning
Department of Agricultural and Biosystems Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
* Corresponding author: chandra.tep@ugm.ac.id
Water is essential for living organisms, including crops. Its presence is a crucial factor for agriculture. Soil and water conservation is an effort to sustainably maintain the availability of water, thereby meeting the water needs of crops in the agricultural sector. This research aims to estimate the potency of surface runoff as a hydrological indicator of watershed critically for soil and water conservation purposes. A hydrological tank model was used to estimate surface runoff. The results showed a potential for surface runoff of approximately 133.82 mm/month, occurring primarily during the peak rainy season from December to April. Soil and water conservation (SWC) technology using water harvesting ponds (WHP) on farmland was proposed to store surface runoff. Data analysis indicates that the use of WHP provides significant benefits from environmental and economic aspects. Based on an average WHP storage capacity of 10 m³, approximately 40% of the total watershed area is required for constructing water harvesting structures to accommodate all surface runoff. Harvesting all surface runoffs increases the base flow during the dry season by 225.14 mm. This study serves as a valuable reference for soil and water conservation planning, particularly in tropical watersheds.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.