Issue |
BIO Web Conf.
Volume 89, 2024
The 4th Sustainability and Resilience of Coastal Management (SRCM 2023)
|
|
---|---|---|
Article Number | 07004 | |
Number of page(s) | 9 | |
Section | Geo-Marine and Mapping and Application for Coastal Area | |
DOI | https://doi.org/10.1051/bioconf/20248907004 | |
Published online | 23 January 2024 |
Dense Neural Network for Classification of Seafloor Sediment using Backscatter Mosaic Feature
Department of Geomatics Engineering, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia 60111
* Corresponding author: khomsin@geodesy.its.ac.id
Water transportation plays a vital role in global economic activities, facilitating more than 85% of international trade and serving as a cost-effective and essential means to fulfill the demand for goods and services. Similarly, the Benoa Port, situated in the southern part of Denpasar City, operates in the same manner. By utilizing Multibeam Echo Sounder (MBES) backscatter data, backscatter mosaics can be generated to identify various seafloor sediment types, which consist of rock fragments, minerals, and organic materials. The characteristics of these sediments, such as grain size, density, composition, and others, can be observed. To improve the classification of sediments, the integration of backscatter data and backscatter features, such as ASM (Angular Second Moment), Energy, Contrast, and Correlation, can be employed. Supervised classification models like Dense Neural Network (DNN) can be utilized to accurately determine the types of seafloor sediments. The application of DNN modeling resulted in a training accuracy rate of 88% and a testing accuracy rate of 100%. The accuracy results delineated six distinct sediment types. Notably, sandy silt exhibited the highest distribution, accounting for 49.30%, whereas soft clayey silt registered the lowest distribution at 0.53%, as determined by their respective spatial prevalence.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.