Open Access
Issue
BIO Web Conf.
Volume 89, 2024
The 4th Sustainability and Resilience of Coastal Management (SRCM 2023)
Article Number 07004
Number of page(s) 9
Section Geo-Marine and Mapping and Application for Coastal Area
DOI https://doi.org/10.1051/bioconf/20248907004
Published online 23 January 2024
  • G. Nikawanti and R. Aca, “Ecoliteracy: Membangun Ketahanan Pangan dari Kekayaan Maritim Indonesia,” Jurnal Kemaritiman: Indonesian Journal of Maritime, vol. 2, no. 2, 2021. [Google Scholar]
  • Khomsin, D. G. Pratomo, and I. Saputro, “Comparative analysis of singlebeam and multibeam echosounder bathymetric data,” IOP Conf Ser Mater Sci Eng, vol. 1052, no. 1, p. 012015, Jan. 2021, doi: 10.1088/1757-899x/1052/1/012015. [CrossRef] [Google Scholar]
  • F. Nicolae, M. Bucur, and A. Cotorcea, “Port Performance Evaluation. Case study: Ports in the Black Sea Basin,” IOP Conf Ser Earth Environ Sci, vol. 172, no. 1, Jul. 2018, doi: 10.1088/1755-1315/172/1/012004. [CrossRef] [Google Scholar]
  • Q. Tang, X. Liu, X. Ji, J. Li, Y. Chen, and B. Lu, “Using Seabed Acoustic Imagery to Characterize and Classify Seabed Sediment Types in the Pockmark Area of the North Yellow Sea, China,” Applied Acoustics, vol. 174, Mar. 2021, doi: 10.1016/j.apacoust.2020.107748. [CrossRef] [Google Scholar]
  • X. Ji, B. Yang, and Q. Tang, “Seabed Sediment Classification using Multibeam Backscatter Data based on the Selecting Optimal Random Forest Model,” Applied Acoustics, vol. 167, Oct. 2020, doi: 10.1016/j.apacoust.2020.107387. [Google Scholar]
  • R. Nitriansyah and B. K. Cahyono, “Seabed Classification Using Multibeam Echosounder Measurement Data,” IOP Conf Ser Earth Environ Sci, vol. 1039, no. 1, 2022, doi: 10.1088/1755-1315/1039/1/012045. [CrossRef] [Google Scholar]
  • Subarsyah and L. Arifin, “Seabed Characterization through Image Processing of Side Scan Sonar Case Study: Bontang and Batam,” Bulletin of the Marine Geology, vol. 34, no. 1, pp. 37–50, 2019. [CrossRef] [Google Scholar]
  • P. Porskamp, A. C. G. Schimel, M. Young, A. Rattray, Y. Ladroit, and D. Ierodiaconou, “Integrating Multibeam Echosounder Water-column Data into Benthic Habitat Mapping,” Limnol Oceanogr, vol. 67, no. 8, pp. 1701–1713, Aug. 2022, doi: 10.1002/lno.12160. [CrossRef] [Google Scholar]
  • G. A. Rocha, A. C. Bastos, G. M. Amado-Filho, G. C. Boni, R. L. Moura, and N. Oliveira, “Heterogeneity of rhodolith beds expressed in backscatter data,” Mar Geol, vol. 423, May 2020, doi: 10.1016/j.margeo.2020.106136. [CrossRef] [Google Scholar]
  • T. Zhao, G. M. Gavazzi, S. Lazendić, Y. Zhao, and A. Pižurica, “Acoustic Seafloor Classification using the Weyl Transform of Multibeam Echosounder Backscatter Mosaic,” Remote Sens (Basel), vol. 13, no. 9, 2021, doi: 10.3390/rs13091760. [Google Scholar]
  • J. Wan et al., “MBES Seabed Sediment Classification Based on a Decision Fusion Method Using Deep Learning Model,” Remote Sens (Basel), vol. 14, no. 15, Aug. 2022, doi: 10.3390/rs14153708. [Google Scholar]
  • Khomsin, Mukhtasor, D. G. Pratomo, and Suntoyo, “The Development of Seabed Sediment Mapping Methods: The Opportunity Application in the Coastal Waters,” IOP Conf Ser Earth Environ Sci, vol. 731, no. 1, Apr. 2021, doi: 10.1088/1755-1315/731/1/012039. [Google Scholar]
  • B. S. Halpern et al., “Recent Pace of Change in Human Impact on the World’s Ocean,” Sci Rep, vol. 9, no. 1, Dec. 2019, doi: 10.1038/s41598-019-47201-9. [CrossRef] [Google Scholar]
  • C. C. O’Hara, M. Frazier, and B. S. Halpern, “At-risk Marine Biodiversity Faces Extensive, Expanding, and Intensifying Human Impacts,” Science (1979), vol. 372, no. 6537, pp. 84–87, Apr. 2021, doi: 10.1126/science.abe6731. [Google Scholar]
  • G. Epstein, J. J. Middelburg, J. P. Hawkins, C. R. Norris, and C. M. Roberts, “The Impact of Mobile Demersal Fishing on Carbon Storage in Seabed Sediments,” Global Change Biology, vol. 28, no. 9. John Wiley and Sons Inc, pp. 2875–2894, May 01, 2022. doi: 10.1111/gcb.16105. [CrossRef] [PubMed] [Google Scholar]
  • R. Awal, P. Sapkota, S. Chitrakar, B. S. Thapa, H. P. Neopane, and B. Thapa, “A General Review on Methods of Sediments Sampling and Mineral Content Analysis,” IOP Conference Series: Journal of Physics, vol. 1266, no. 1, 2019, doi: 10.1088/1742-6596/1266/1/012005. [Google Scholar]
  • R. A. Rachman and M. Wibowo, “Study of Sea Bottom Sediment Characteristic to Support Patimban Port Development Plan,” Jurnal Geologi Kelautan, vol. 17, no. 2, 2019, doi: http://dx.doi.org/10.32693/jgk.17.2.2019.592. [CrossRef] [Google Scholar]
  • X. Cui, F. Yang, X. Wang, B. Ai, Y. Luo, and D. Ma, “Deep Learning Model for Seabed Sediment Classification Based on Fuzzy Ranking Feature Optimization,” Mar Geol, vol. 432, Feb. 2021, doi: 10.1016/j.margeo.2020.106390. [Google Scholar]
  • P. Adi, H. M. Manik, and S. Pujiyati, “Integrasi Data Multibeam Batimetri dan Mosaik Backscatter untuk Klasifikasi Tipe Sedimen,” Jurnal Teknologi Perikanan dan Kelautan, vol. 7, no. 1, pp. 77–84, 2016, doi: https://doi.org/10.24319/jtpk.7.77-84. [Google Scholar]
  • Ş. Öztürk and B. Akdemir, “Application of Feature Extraction and Classification Methods for Histopathological Image using GLCM, LBP, LBGLCM, GLRLM and SFTA,” Procedia Comput Sci, vol. 132, pp. 40–46, 2018, doi: 10.1016/j.procs.2018.05.057. [CrossRef] [Google Scholar]
  • R. M. Haralick, I. Dinstein, and K. Shanmugam, “Textural Features for Image Classification,” IEEE Trans Syst Man Cybern, vol. SMC-3, no. 6, pp. 610–621, 1973, doi: 10.1109/TSMC.1973.4309314. [CrossRef] [Google Scholar]
  • W. Sun, A. Z. Kolappal, and P. Gong, “Two Computation Methods for Detecting Anisotropy in Image Texture,” Geographic Information Sciences, vol. 11, no. 2, pp. 87–96, 2005, doi: 10.1080/10824000509480604. [Google Scholar]
  • S. A. Samsudin and R. C. Hasan, “Assessment of Multibeam Backscatter Texture Analysis for Seafloor Sediment Classification,” in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, International Society for Photogrammetry and Remote Sensing, Sep. 2013, pp. 177–183. doi: 10.5194/isprs-archives-XLII-4-W5-177-2017. [Google Scholar]
  • Z. Zhu, X. Cui, K. Zhang, B. Ai, B. Shi, and F. Yang, “DNN-based Seabed Classification using Differently Weighted MBES Multifeatures,” Mar Geol, vol. 438, Aug. 2021, doi: 10.1016/j.margeo.2021.106519. [Google Scholar]
  • F. Amherd and E. Rodriguez, “Heatmap-based Object Detection and Tracking with a Fully Convolutional Neural Network,” Jan. 2021, [Online]. Available: http://arxiv.org/abs/2101.03541 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.