Issue |
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
|
|
---|---|---|
Article Number | 00162 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/bioconf/20249700162 | |
Published online | 05 April 2024 |
A Salp Swarm Algorithm for Interpreting Model Predictions
1 University of Alkafeel, Najaf, Iraq
2 University of Qom, Qom, Iran
3 Ministry of Education, Directorate of Education, Najaf, Iraq
* Corresponding Author: ali.j.r@alkafeel.edu.iq
The Internet of Things (IoT), is changing practically every aspect of modern life. The proliferation of IoT has led to a rise in the frequency of cyber catastrophes. The threat landscape that security professionals face is dynamic, complex, and diversified. This paper proposes a novel approach to enhance Internet of Things applications by fusing the swarm intelligence of Salp Swarm Algorithms (SSA) with the predictive power of Random Forest (RF) and Decision Tree (DT) models Even though there is a lot of interest in the topic of explainable Artificial Intelligence (XAI) these days, more research is still needed to fully understand how successful XAI is at finding attack surfaces and vectors when implemented in cyber security applications. The growing use of machine/deep learning models in cyber defense, especially anomaly-based IDS, requires understanding the architecture of the models and providing evidence for their predictions to determine the probability of intrusions. Numerous approaches to interpretation have been proposed. They help researchers comprehend things like which variables have influenced the machine learning predictions. In this paper, we primarily address two popular local interpretation methods in machine learning: Shapley values and Local Interpretable Model-Agnostic Explanations (LIME).
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.